论文浅读之Mamba: Linear-Time Sequence Modeling with Selective State Spaces

本文主要是介绍论文浅读之Mamba: Linear-Time Sequence Modeling with Selective State Spaces,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

这篇论文提出了一种新型的"选择性状态空间模型"(Selective State Space Model, S6)来解决之前结构化状态空间模型(SSM)在离散且信息密集的数据(如文本)上效果较差的问题。
Mamba 在语言处理、基因组学和音频分析等领域的应用中表现出色。其创新的模型采用了线性时间序列建模架构,结合了选择性状态空间,能够在语言、音频和基因组学等不同模式中提供卓越的性能。这种突破性的模型标志着机器学习方法的重大转变,显著提升了效率和性能。Mamba 的主要优势之一是能够解决传统 Transformer 在处理长序列时的计算挑战。通过将选择机制集成到其状态空间模型中,Mamba 可以根据序列中每个 token 的相关性,灵活地决定是传播还是丢弃信息。这种选择性的方法显著加快了推理速度,使吞吐率比标准 Transformer 高出五倍,并实现了随序列长度线性扩展。值得注意的是,即使序列扩展到一百万个元素,Mamba 的性能也会随着实际数据的增加而不断提升。

为什么作SSM

基础模型的优缺点

RNN优点

推理很快

RNN缺点

线性空间占用,串行导致龟速的训练过程,但能够进行自然且快速地执行推理
训练过程的梯度反向传播被迫逐个通过各个单元,更新参数
推理过程不需要受这一问题影响,因此RNN受益于其较为简单的结构设计,获得了相对快的推理速度
遗忘问题,无法有效处理长程依赖关系――即便有了LSTM和GRJ等门控的设计,也只是延缓遗忘造成严重影响的位置。
面对长序列仍然无能为力

CNN优点

≥线性空间占用,可以并行训练

CNN缺点

其结构主要关注局部特征,容易忽视全局特征
卷积核主要关注当前元素附近的其他元素,不能直接使当前元素关注长程的其他元素>没有推理方面的优化,固定的卷积核限制了推理速度
相比于RNN,需要额外用卷积核去乘&加多个元素,其推理速度相对平庸

Transformer优点

长距离依赖关系
并行训练

Transformer缺点

计算量大
推理速度慢

Attention优点

可以并行训练,并且可以良好地捕捉长程依赖关系过大的空间复杂度和时间复杂度O(L^2)

Attention缺点
复杂的注意力分数计算过程造成其推理速度缓慢

什么是SSM模型?

状态空间模型”(State Space Model),它是一种用于描述动态系统的数学模型。SSM模型广泛应用于信号处理、控制系统、经济学、金融学等领域,用于建模和预测时间序列数据。

状态空间模型通过两个方程来描述动态系统的演化:

状态方程(**State Equation):描述系统的内部状态如何随时间变化。
观测方程(Observation Equation):描述如何通过观测到的变量(数据)来获取系统的内部状态信息。

公式表示
在这里插入图片描述
连续函数化,零阶表示

在这里插入图片描述

卷积与递归双重属性

在这里插入图片描述

SSM模型到S4模型

SSM模型存在的问题

CNN和RNN的长期依赖捕捉能力都不行,这导致SSM也有这个问题

解决方案

HIPPo矩阵替代随机初始化的A矩阵
A矩阵包含着各个时间步隐状态变化的信息,A矩阵左右着信息遗忘过程使用HIPPO矩阵替换矩阵

在这里插入图片描述

相比于随机初始化一个A,使用HIPPO可以有效缓解遗忘问题
为了避免HIPPO本身N2的尺寸带来的过大运算量,利用矩阵分解,使用低秩矩阵表示HIPPO
在这里插入图片描述

如果想深入了解有关如何计算HiPPO矩阵和自己构建S4模型:可以查看s4的官方文档。
s4注释文档

hippo原文:点击此处

S4模型

序列的结构状态空间,一种可以有效建模长时序依赖的SSM模型

从s4模型到s6模型

1. S4与SSM的问题
ABC矩阵,尤其是最重要的A,只可能在训练过程中更新
自己。一旦训练完成,无论新的输入是什么,都会通过完全一样的A,这导致无法根据输入做针对性推理――无选择性
2.如果使ABC会根据输入变化后的问题:
无法将SSM转化为标准卷积过程

ABC如果能够根据输入的变化而变化,则可以避免这种无选择性
A矩阵和B矩阵参数化后的公式递推:无法预计算卷积核,因为不能做到反向传
播前的训练的过程保持卷积核的不变

在这里插入图片描述

在这里插入图片描述
以上详细内容可以参考mamba框架,方便进一步理解。

mamba的具体创新

1. 引入选择机制(Selection Mechanism):
论文发现之前的标准SSM模型缺乏有效地根据输入选择性地处理信息的能力,这限制了它们在离散数据建模上的表现。
作者提出了一种简单但关键的改进,就是让SSM的参数(A, B, C)依赖于当前输入x,从而赋予模型动态选择和过滤信息的能力。
2. 硬件感知的高效算法:
上述选择机制带来了计算效率的挑战,因为标准SSM依赖于时间不变性来实现高效的卷积计算。
作者设计了一种基于扫描(scan)的硬件感知算法,在不损失计算效率的情况下解决了这一问题。
3.简单而统一的架构设计:
作者将选择性SSM与Transformer中的MLP块结合,设计出了一种名为Mamba的新型序列建模架构。
Mamba去除了Transformer中的注意力机制和MLP层,具有更简单和统一的结构。
4. 强大的泛化性能:
实验结果显示,Mamba在合成任务、音频建模、基因组建模以及语言建模等多个领域都取得了出色的表现。
特别是在语言建模上,Mamba-3B的性能可以与Transformer两倍大小的模型媲美。

选择机制

在这里插入图片描述
BC变为输入数据驱动的矩阵,尺寸为[BLN]
△变为输入数据驱动的矩阵,尺寸为[BLD]

\overset{-}{A}, \overset{-}{B}最终变成“针对batch内每一条数据的每个时间步,都有对应矩阵”
由于在先前的离散化处理过程中,最终得到的\overset{-}{A}, \overset{-}{B}有△参与,因此最终运算得到的\overset{-}{A}, \overset{-}{B}变成了数据驱动、

不直接把AB参数化成[BLDN]的尺寸,一方面,会造成参数量增大;另一方面,通过上文推导的带有A项的运算,因此只需要参数化成如上的尺寸即可实现AB的参数化

硬件感知算法

该算法使用扫描而不是卷积来循环计算模型,但不实现扩展状态,以避免在GPU内存层次结构的不同级别之间进行IO访问。由此产生的实现在理论上(序列长度线性缩放,与所有基于卷积的ssm的伪线性相比)和现代硬件上(在A100 gpu上快3倍)都比以前的方法快。

并行化――选择性扫描算法(selective scan algorithm)

放弃用卷积来描述SSM,而是定义了一种新的“加”运算,在并行计算中,“连加”操作是可并行的:
假设运算操作的顺序与关联矩阵A无关,会发现每个x乘的矩阵都是源于x本身的(矩阵BC是x通过线性层得到的)
定义新的运算过程
在这里插入图片描述

该运算符满足交换律&结合律,取该运算符的第二项结果。虽然不是卷积运算,但是一种并行运算

在这里插入图片描述

在这里插入图片描述

利用SSM本身显存占用小的优势,争取模型和运算过程全部放在SRAM完成;相比之下,Transformer显存占用过大,无法完成这种事情
HBM:显卡的高带宽内存,提供了比传统的GDDR更高的带宽,更低的功耗。当然,相比于SRAM,HBM仍是“低速大容量”的
SRAM:显卡的高速缓存区,读取速度非常快
Transformer仅注意力层可能就需要把模型各个模块分批次从HBM加载到SRAM去计算,一个模块算完了就从SRAM取出来,再加载下一个模块,如,先算QKv,再算注意力分数,注意力分数再与输入相乘
SsM的参数(原始的A,B,C,4会被直接加载到SRAM,在SRAM里计算A,B及后续操作,一步直接得到输出,从SRAM写回HBM)

在这里插入图片描述

简单而统一的架构设计

在这里插入图片描述

  1. 去除Transformer的注意力机制和MLP层:
    Mamba不使用Transformer的核心模块 - 注意力机制和MLP层。
    取而代之的是一个融合了选择性状态空间模型和简单MLP的单一模块。
  2. 更简单和统一的结构:
    通过移除Transformer中的复杂模块,Mamba的整体架构变得更加简单和统一。
    整个模型只由重复堆叠的这种单一模块构成,没有像Transformer那样的复杂组件。
  3. 保留关键功能:
    尽管去掉了注意力和MLP,但Mamba仍然能够通过选择性状态空间模型捕捉复杂的序列依赖关系。
    同时还继承了状态空间模型的高效计算特性。

Mamba的设计思路是:在保留核心功能的前提下,最大限度地简化和统一模型结构,去除Transformer中一些复杂的组件。这使得整个模型更加简洁明了,同时也有利于提高效率和泛化性。这种简单而统一的架构设计是Mamba的一大创新之处。

mamba和其他模型的总结

在这里插入图片描述
具体可见 大佬的讲解

实验评估

Mamba 在一系列流行的下游零分评估任务上的表现。将这些模型与最著名的开源模型进行比较,最重要的是 Pythia 和 RWKV,它们使用与mamba模型相同的token、数据集和训练长度(300B token)进行训练。 (Mamba 和 Pythia 的训练上下文长度为 2048,而 RWKV 的训练上下文长度为 1024)。
在这里插入图片描述

mamba的效果均优于比较的模型。

总结

Mamba 模型通过将选择性结构化状态空间模型 (SSM) 集成到简化的端到端神经网络架构中,显著提升了性能,特别是在缺乏传统注意力机制的情况下。Mamba-3B 模型的表现优于同尺寸的 Transformer,在性能上甚至可与两倍尺寸的 Transformer 相媲美。1.4B Mamba 语言模型的推理吞吐量是同类大小 Transformer 的 5 倍,其质量相当于两倍大小的 Transformer。在语言建模任务的预训练阶段和各种下游评估中,Mamba 显示出卓越的性能,超越了同类 Transformer 模型。
Mamba 的一个显著特点是其随着上下文长度的增加而逐步提高性能,能够有效管理多达一百万个元素的序列。这一特点突显了 Mamba 作为通用序列处理应用基础模型的多功能性和潜力,特别是在需要处理长上下文序列的新兴领域,如基因组学、音频和视频。其核心设计是一种专为结构化状态空间模型定制的新颖选择机制,使得模型能够执行上下文相关的推理,同时保持序列长度的线性可扩展性。
在序列长度的线性缩放方面,Mamba 通过~O(N) 的线性缩放颠覆了传统 Transformer ~O(N²) 二次缩放的规则,这一改进使 Mamba 能够有效处理多达一百万个元素的序列,这是当前 GPU 技术的一个壮举。
Mamba 通过高效利用更大数据集和网络,实现了更智能的结果,挑战了仅凭更多数据和更大网络就能提升性能的传统观念。针对 GPU 效率的优化设计,使 Mamba 解决了常见的计算效率低下问题,为机器学习架构的效率设立了新标准。

友情链接:

这是AIGC开放社区,信息共享平台,欢迎对AIGC与人工智能感兴趣的小伙伴们加入。
https://www.yuque.com/jasonxue/eruse9/wxtzlgluig4mgsyz
在这里插入图片描述

这篇关于论文浅读之Mamba: Linear-Time Sequence Modeling with Selective State Spaces的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083721

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

状态模式state

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/state 在一个对象的内部状态变化时改变其行为, 使其看上去就像改变了自身所属的类一样。 在状态模式中,player.getState()获取的是player的当前状态,通常是一个实现了状态接口的对象。 onPlay()是状态模式中定义的一个方法,不同状态下(例如“正在播放”、“暂停

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

linux 下Time_wait过多问题解决

转自:http://blog.csdn.net/jaylong35/article/details/6605077 问题起因: 自己开发了一个服务器和客户端,通过短连接的方式来进行通讯,由于过于频繁的创建连接,导致系统连接数量被占用,不能及时释放。看了一下18888,当时吓到了。 现象: 1、外部机器不能正常连接SSH 2、内向外不能够正常的ping通过,域名也不能正常解析。

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需