生成模型的两大代表:VAE和GAN

2024-06-22 02:28
文章标签 模型 生成 两大 代表 gan vae

本文主要是介绍生成模型的两大代表:VAE和GAN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生成模型

给定数据集,希望生成模型产生与训练集同分布的新样本。对于训练数据服从\(p_{data}(x)\);对于产生样本服从\(p_{model}(x)\)。希望学到一个模型\(p_{model}(x)\)与\(p_{data}(x)\)尽可能接近。

这也是无监督学习中的一个核心问题——密度估计问题。有两种典型的思路:

  1. 显式的密度估计:显式得定义并求解分布\(p_{model}(x)\),如VAE。
  2. 隐式的密度估计:学习一个模型\(p_{model}(x)\),而无需显式定义它,如GAN。

VAE

AE

首先介绍下自编码器(Auto Encoder, AE),它将输入的图像X通过编码器encoder编码为一个隐向量(bottleneck)Z,然后再通过解码器decoder解码为重构图像X’,它将自己编码压缩再还原故称自编码。结构如下图所示:

在这里插入图片描述

以手写数字数据集MNIST为例,输入图像大小为28x28,通道数为1,定义隐向量的维度(latent_dim)为1 x N,N=20。经过编码器编码为一个长度为20的向量,再通过解码器解码为28x28大小的图像。将生成图像X’与原始图像X进行对比,计算重构误差,通过最小化误差优化模型参数:

\[Loss = distance(X, X’) \]

一般distance距离函数选择均方误差(Mean Square Error, MSE)。AE与PCA作用相同,通过压缩数据实现降维,还能把降维后的数据进行重构生成图像,但PCA的通过计算特征值实现线性变换,而AE则是非线性。

VAE

如果中间的隐向量的每一分量取值不是直接来自Encoder,而是在一个分布上进行采样,那么就是变分自编码器(Variational Auto Encoder,VAE),结构如下图所示:

在这里插入图片描述

还是上面的例子,这里的Z维度还是1 x 20,但是每一分量不是直接来自Encoder,而是在一个分布上进行采样计算,一般来说分布选择正态分布(当然也可以是其他分布)。每个正态分布的\(\mu\)与\(\sigma\)由Encoder的神经网络计算而来。关于Z上每一分量的计算,这里,\(\epsilon\)从噪声分布中随机采样得到。

\[z{(i,l)}=\mu{(i)}+\sigma{(i)}\cdot\epsilon{(l)}\space\mathrm{and}\space\epsilon^{(l)}\sim N(0,I) \]

在Encoder的过程中给定x得到z就是计算后验概率\(q_\phi(z|x)\),学习得到的z为先验分布\(p_\theta(z)\),Decoder部分根据z计算x的过程就是似然估计\(p_\theta(x|z)\),训练的目的也是最大化似然估计(给出了z尽可能得还原为x)。

边缘似然度\(p_\theta(x)=\int p_\theta(z)p_\theta(x|z)\,{\rm d}z\),边缘似然度又是每个数据点的边缘似然之和组成:\(\log p_\theta(x{(1)},\cdots,x{(N)})=\sum_{i=1}^N\log p_\theta(x^{(i)})\),可以被重写为:

\[\log p_\theta(x^{(i)})={\rm D_{KL}}(q_\phi(z|x{(i)})||p_\theta(z|x{(i)}))+{\cal L}(\theta,\phi;x^{(i)}) \]

\(p_\theta(z|x^{(i)})\)通常被假设为标准正态分布,等式右边第二项称为边缘似然估计的下界,可以写为:

\[\log p_\theta(x^{(i)})\ge{\cal L}(\theta,\phi;x^{(i)})=\mathbb{E}_{z\sim q_\phi(z|x)}[-\log q_\phi(z|x)+\log p_\theta(x|z)] \]

得到损失函数:

\[{\cal L}(\theta,\phi;x^{(i)})=-{\rm D_{KL}}(q_\phi(z|x^{(i)})||p_\theta(z))+\mathbb{E}_{z\sim q_\phi(z|x^{(i)})}[\log p_\theta(x^{(i)}|z)] \]

GAN

生成对抗网络(Generative Adversarial Nets, GAN)需要同时训练两个模型:生成器(Generator, G)和判别器(Discriminator, D)。生成器的目标是生成与训练集同分布的样本,而判别器的目标是区分生成器生成的样本和训练集中的样本,两者相互博弈最后达到平衡(纳什均衡),生成器能够以假乱真,判别器无法区分真假。

在这里插入图片描述

生成器和判别器最简单的应用就是分别设置为两个MLP。为了让生成器在数据x学习分布\(p_g\),定义一个噪声分布\(p_z(z)\),然后使用生成器\(G(z;\theta_g)\)将噪声映射为生成数据x’(\(\theta_g\)是生成器模型参数)。同样定义判别器\(D(x;\theta_d)\),输出为标量表示概率,代表输入的x来自数据还是\(p_g\)。训练D时,以最大化分类训练样例还是G生成样本的概率准确性为目的;同时训练G以最小化\(\log(1-D(G(z)))\)为目的,两者互为博弈的双方,定义它们的最大最小博弈的价值函数\(V(G,D)\):

\[\min_G\max_DV(D,G)=\mathbb{E}_{x\sim p_{data}}[\log D(x)]+\mathbb{E}_{z\sim p_{z}}[\log(1-D(G(z)))] \]

可以得到生成器损失函数:\(\mathcal{L}_G =\frac1m\sum_{i=1}m\log\left(1-D\left(G\left(z{(i)}\right)\right)\right)\)

判别器损失函数:\(\mathcal{L}_D=\frac1m\sum_{i=1}^m\left[\log D\left(\boldsymbol{x}{(i)}\right)+\log\left(1-D\left(G\left(\boldsymbol{z}{(i)}\right)\right)\right)\right]\)

极端情况下如果D很完美,\(D(x)=1,D(G(z))=0\),最后两项结果都为0,但如果存在误分类,由于log两项结果会变为负数。随着G的输出越来越像x导致D误判,价值函数V也会随之变小。

计算它们的期望(\(\mathbb{E}_{x\sim p}f(x)=\int_xp(x)f(x){\rm d}x\)):

\[V(G,D)=\int_xp_{data}(x)\log D(x)\,{\rm d}x+\int_zp_z(z)\log(1-D(G(z)))\,{\rm d}z \\ =\int_xp_{data}(x)\log D(x)+p_g(x)\log(1-D(x))\,{\rm d}x \]

当D取到最优解时,上面的最大最小博弈价值函数\(V(G,D)\)可以写为:

\[C(G)=\max_DV(G,D)= \\ \mathbb{E}_{x\sim p_{data}}[\log\frac{p_{data}(x)}{p_{data}(x)+p_g(x)}]+\mathbb{E}_{x\sim p_g}[\log\frac{p_g(x)}{p_{data}(x)+p_g(x)}] \]

当\(p_g=p_{data}\),取到\(-\log4\),上式可以写成KL散度的形式:

\[C(G)=-\log4+{\rm KL}(p_{data}||\frac{p_{data}+p_g}{2})+{\rm KL}(p_g||\frac{p_{data}+p_g}{2}) \]

当\(p_g=p_{data}\)时,G取最小值也就是最优解。对于对称的KL散度,可以写成JS散度的形式:

\[C(G)=2\cdot{\rm JS}(p_{data}||p_g)-\log4 \]

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

这篇关于生成模型的两大代表:VAE和GAN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083024

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G