【有手就会】图数据库Demo教程,实现反洗钱场景下银行转账流水数据分析

本文主要是介绍【有手就会】图数据库Demo教程,实现反洗钱场景下银行转账流水数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

星环社区版家族于近期发布了单机、30s一键启动的StellarDB图数据库,本篇文章将为用户介绍如何使用开发版StellarDB实现人物关系探索。

友情链接:白话大数据 | 关于图数据库,没有比这篇更通俗易懂的啦

TDH社区版本次发布StellarDB社区版开发版,让更多用户地低资源成本上手体验企业级图数据库。如果您感兴趣的话,可以访问星环官网进行产品下载,StellarDB社区开发版是免费提供给大家的,欢迎大家下载使用。

StellarDB社区开发版相关链接

  • StellarDB社区开发版安装手册(含演示视频)
  • StellarDB使用手册
  • 产品下载地址
  • 更多社区版相关资源
  • 《诡秘之主》中人物关系探索Demo

操作前提

您需要先基于安装手册完成StellarDB图数据库的安装后才可以开始进行下方操作。

一、 场景描述

金融技术的飞速进步促使金融机构规模急剧扩张,同时,洗钱犯罪活动亦随之进化,变得更为新颖、专业化、团伙导向且难以察觉,给反洗钱工作带来严峻挑战。在此背景下,本演示将以StellarDB的KGExplorer工具为核心,展示如何分析并可视化银行转账记录,从中抽丝剥茧,揭示潜在的反洗钱犯罪线索。

二、 数据集介绍

数据集结构

节点介绍

节点名称(label)节点包含的属性(数据的类型)
客户姓名(STRING)、地址(STRING)
受益人姓名(STRING)、地址(STRING)
银行名称(STRING)
交易id(STRING)、金额(INT)

边介绍

边名称(label)边的起始节点与指向节点
发起交易客户指向交易
转账给交易执行受益人
持有账户客户指向银行

数据集获取

https://transwarp-ce-1253207870.cos.ap-shanghai.myqcloud.com/TDH-CE-2024-5/%E5%8F%8D%E6%B4%97%E9%92%B1%E4%B9%8B%E9%93%B6%E8%A1%8C%E8%BD%AC%E8%B4%A6%E6%B5%81%E6%B0%B4%E5%88%86%E6%9E%90.csv

三、 创建图谱并导入数据

1. 创建图谱(schema)

步骤一 进入KG Explorer,点击右上角“创建图”按钮,填写图名称进行创建

注意:StellarDB社区开发版创建图时,副本数只能为1。

图片22.png

2. 定义图谱

添加节点

按alt/command+左键单击。

在画布中添加节点后,将节点的“label”定义为“交易”,并为其添加“id”属性,属性类型为“STRING”,添加“金额”属性,属性类型为“INT”。添加完成后点击“保存”。

在画布中添加节点,将节点的的“label”定义为“客户”,并为其添加“姓名”与“地址”属性,属性类型为均为“STRING”,添加完成后点击“保存”。

继续重复上述操作,分别添加“银行”与“受益人”等节点,并为其添加对应的属性及属性的数据类型(具体属性参考第二部分节点介绍中的表格)

tips: 可以选择将点的颜色进行差异化定义,以便于后续观察分析,最终效果如下:

添加关系

按住shift键同时选中两个节点完成关系添加

注意,关系具有指向性,先点击为起点,后点击为终点。

按住shift键,依次点击“客户”与“交易”,创建“客户”与“交易”节点之间的关系,label为“发起交易”,添加完成后点击“保存”。

重复上述操作,分别在“客户”与“银行”之间创建“持有账户”关系、“交易”与“受益人”之间创建“转账给”关系。

此时,图谱已经创建完成,点击右上角后,即可导入数据进行数据分析。

3. 导入数据

数据集上传

注意:在上传文件之前,需要提前对‘hive’用户进行赋权,否则上传时将报错。操作方式有两种,推荐使用Guardian赋权的方式解决。
a) 在Guardian服务界面“一键开启安全”后,访问Guardian Server界面对hive用户赋予 HDFS 的 ‘/’ 目录可读可写可执行的权限。(推荐操作)
b) 未开启Guardian时,在服务端初始化客户端后,执行如下命令:
        export HADOOP_USER_NAME=hdfs
        hdfs dfs -chmod -R 777 /

步骤一 在图管理页面找到刚刚创建的图谱,点击“导数”进入数据导入页面。

步骤二 下载<第二部分数据集获取>中的数据集后上传至KG

在“数据导入”页面中选择“文件管理”,点击“上传文件”选择下载好的csv文件,将其上传至KG。上传成功后可以看到数据源文件列表中有对应的文件显示。

修改列属性

点击编辑,将“col0”列的列名改为“客户姓名”,将“交易金额”列的数据类型改为“int”。

csv导数

然后,返回csv导数页面,按照如下顺序,依次点击选中目标数据集。注意:此处需点击7次 ‘添加’,然后将添加文件分别设定为4个“点”与3条“边”。

配置点属性映射

先对4个点数据配置属性映射。具体映射配置的内容为:

第一个点数据对应点的uid为“客户姓名”,label映射为“客户”;下方属性映射:图属性“姓名”对应的映射列名为“客户姓名”、“地址”对应“客户地址”。可参照下图进行配置:

第二个点数据“交易”属性配置如下所示:

第三个点数据“受益人姓名”属性配置如下所示:

第四个点数据“银行名称”属性配置如下所示:

配置边属性映射

接着对边数据进行起点uid、终点uid映射配置。具体配置内容为:

  • 1) 边label映射为“发起交易”、起点uid为“客户姓名”、起点label映射为“客户”、终点uid为“交易id”、终点label映射为“交易”。
  • 2) 边label映射为“转账给”、起点uid为“交易id”、起点label映射为“交易”、终点uid为“受益人姓名”、终点label映射为“受益人”。
  • 3) 边label映射为“持有账户”、起点uid为“客户姓名”、起点label映射为“客户”、终点uid为“银行名称”、终点label映射为“银行”。

配置完成后,点击右下角“导入”,等待数秒钟后,即可完成数据导入。

Note:导入完成后可以点击右侧感叹号查看是否有失败的,如果有的话仔细查看是否前面的步骤配置有问题,进行重新映射或修改点/边数据。

四、 展示节点关系

回到首页进入图探索页面。

操作示例1. 展示客户与银行节点之间的关系

MATCH (c:客户)-[a:持有账户]->(b:银行)
RETURN c,a,b
limit 100

操作示例2. 展示客户节点、交易节点、受益人节点之间的关系。

MATCH (c:客户)-[f:发起交易]->(t:交易)-[z:转账给]->(s:受益人)
RETURN c,f,t,z,s
limit 50

五、 数据分析

交易异常检测

检测大额交易:金额超过1000万的交易

MATCH (c:客户)-[f:发起交易]->(t:交易)-[z:转账给]->(s:受益人)
WHERE t.金额 > 10000000
RETURN c,f,t,z,s

检测频繁的小额交易:金额10000以内,且超过10笔交易

MATCH (c:客户)-[f:发起交易]->(t:交易)
WHERE t.金额 < 10000
WITH c, COUNT(t) AS transactionCount
WHERE transactionCount > 10
RETURN transactionCount,c

关系网络分析

查询频繁交易的客户与受益人,超过5次的相同客户与受益人的转账,并展示交易次数

MATCH (c:客户)-[:发起交易]->(t:交易)-[:转账给]->(b:受益人) 
WITH c, b, COUNT(t) as transactionCount WHERE transactionCount > 5 
RETURN c.姓名 AS 客户名字, b.姓名 AS 受益人名字, transactionCount 
ORDER BY transactionCount DESC

客户交易行为分析

找出进行交易次数最多的客户,了解哪些客户最活跃。

MATCH (c:客户)-[:发起交易]->(:交易)
WITH c, COUNT(*) AS transactionCount
ORDER BY transactionCount DESC
LIMIT 10
RETURN c.姓名 AS 客户名字, transactionCount AS 交易次数

受益人地址聚类分析

基于受益人地址分析资金流向的地域分布

MATCH (:交易)-[:转账给]->(b:受益人)
WITH b.地址 AS Address, COUNT(*) AS TransferCount
RETURN Address, TransferCount
ORDER BY TransferCount DESC

了解各银行被多少客户持有账户,评估银行的市场占有率

MATCH (c:客户)-[:持有账户]->(b:银行)
WITH b, COUNT(DISTINCT c) AS accountHolders
RETURN b.名称 AS 银行名称, accountHolders AS 账户持有者数量

以上就是完整的demo教程,希望对您快速上手图数据库有所帮助,如果还有想要学习了解的内容,欢迎多多留言~~

这篇关于【有手就会】图数据库Demo教程,实现反洗钱场景下银行转账流水数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082642

相关文章

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹