算法设计与分析:分治法求最近点对问题

2024-06-21 18:52

本文主要是介绍算法设计与分析:分治法求最近点对问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验目的

1. 掌握分治法思想;

2. 学会最近点对问题求解方法。

、实验内容

1. 对于平面上给定的N个点,给出所有点对的最短距离,即,输入是平面上的N个点,输出是N点中具有最短距离的两点。

2. 要求随机生成N个点的平面坐标,应用蛮力法编程计算出所有点对的最短距离。

3. 要求随机生成N个点的平面坐标,应用分治法编程计算出所有点对的最短距离。

4. 分别对N=100000~1000000,统计算法运行时间,比较理论效率与实测效率的差异,同时对蛮力法和分治法的算法效率进行分析和比较。

5. 如果能将算法执行过程利用图形界面输出,可获加分。

算法思想

1. 预处理:根据输入点集S中的x轴和y轴坐标进行排序,得到X和Y,很显然此时X和Y中的点就是S中的点。

2. 点数较少时的情形

3. 点数|S|>3时,将平面点集S分割成为大小大致相等的两个子集SL和SR,选取一个垂直线L作为分割直线,如何以最快的方法尽可能均匀平分?注意这个操作如果达到效率O(n^2),将导致整个算法效率达O(n^2)。

4. 两个递归调用,分别求出SL和SR中的最短距离为dl和dr。

5. 取d=min(dl, dr),在直线L两边分别扩展d,得到边界区域Y,Y'是区域Y中的点按照y坐标值排序后得到的点集(为什么要排序?),Y'又可分为左右两个集合Y'L和Y'R

6. 对于Y'L中的每一点,检查Y'R中的点与它的距离,更新所获得的最近距离,注意这个步骤的算法效率,请务必做到线性效率,并在实验报告中详细解释为什么能做到线性效率?

、实验步骤

先定义全局变量和点结构:

#define max 10000000000;//假定最大距离
int n,m,**v;
//n为规模,m为创建点集合过程时的点数,v用于判断是否已有该点(rand不产生大于40000的数)
double time1,time2;//蛮力法、分治法花费的时间
double dt1,dt2;//蛮力法、分治法求得的最近距离
//---------------------------
struct D{//点结构int x=0,y=0;
};
D a1,b1,a2,b2;//a1、b1为蛮力法求得的点的下标,a2、b2为分治法求得的点的下标
D *k,*p;//蛮力法、分治法用的点集合

1、蛮力法

        对前面n-1个点的每一个点,均与在其后面的每个点进行距离计算,并与最小距离min比较,若比min小,则更新min的值,时间复杂度为O(n2)。

    伪代码:

Manli(A)min=Infinity//最小距离for i=0 to A.length-1for j=i+1 to A.lengthd=dis(A[i],A[j])//A[i]、A[j]两点的距离if d<minmin=da=ib=ja1=ab1=breturn min

2、分治法

2.1 先用快速排序SortX(A,1,n)将所有点按x坐标升序排序

        方便分治均匀,时间复杂度为O(nlgn)。 

SortX(l,r)i=l,j=r,keyx=A[l].x,keyy=A[l].y //Array A is a global variablewhile i<jwhile i<j and A[j].x>=keyxj--if i<jA[i]=A[j]i++elsebreakwhile i<j and A[i].x<=keyxi++if i<jA[j]=A[i]j--A[i].x=keyx,A[i].y=keyyif(l<i-1) SortX(l,i-1)if(i+1<r) SortX(i+1,r)
2.2 点数n<=3时直接计算,时间复杂度为O(1)

2.3 点数n>3

        将平面点集S分割成为大小大致相等的两个子集SL和SR,选取一个垂直线L(以x坐标居中的为分治点,上面已排序好了)作为分割直线。

        两个子集递归调用(当只有一个元素时返回无穷大,两个时按y升序排序这两个元素),分别求出SL和SR中的最短距离dl和dr。

        取最小值d=min(dl, dr),在直线L两边分别扩展d,得到边界区域Y。       

        然后用Marge(l,mid,r)函数按纵坐标升序归并左右两部分点集合,时间复杂度O(n)

        由于前面点已按y升序排序,所以在区域Y中,两点距离小于当前min的可能情况为在一个长2*d,、宽d的长方形内。

        由于已知两边的最小距离为d,则对在这个长方形内任意一点P,距P为d的点Q的个数不超过6个,例如下面的点P最多在左右两个正方形的6条边上各有一个点距P为d(但是此情况下,在同一个正方形内的其他两个点的距离已经小于当前最小距离小于d了,所以可能的点数不超过6);

        再或者是说,在这个长方形内,最多就六个点相距d,即六个顶点。

        所以,只需要对t点集中的每个点与其后面的5个点比较距离是否小于当前最小距离d并更新d就行。时间复杂度O(n)。

        综上所述,T(n)=2*T(n/2)+f(n)。f(n)为Marge和遍历t点集,时间复杂度均为O(n),共递归lgn次,则时间复杂度为O(nlgn)。前面按x坐标排序的时间复杂度为O(nlgn),所以总的时间复杂度为O(nlgn)。

        伪代码如下:

Fenzhi(l,r)if l==r //一个点return max //直接返回无穷大if l+1==r //两个点,按y升序排序a2=A[l]b2=A[r]A[l]=a2.y<b2.y?a2:b2 //y坐标较小的点A[r]=a2.y>b2.y?a2:b2 //y坐标较大的点return dis(A[l],A[r])if l+1<r //点数大于2mid=(r+l)/2 mid为分治中点,将点集合划分为左右均匀的两部分d=min(Fenzhi(l,mid),Fenzhi(mid+1,r))//d取左右两部分最小距离的较小值Merge(l,mid,r) //按纵坐标升序归并左右两部分的点*t=new Point[r-l+1]//记录跨中线且距离分治中点d水平距离小于当前最小值d的异侧点tn=0 //t点集的元素个数for i=1 to rif A[i].x>(A[i].x-d) and A[i].x<(A[i].x+d)//异侧且距分治中心mid小于d则入tt[tn++]=A[i]for i=0 to tn-1for j=i+1 to tn-1 and j<i+6 //往后判断5个点//t[]中y升序,若y坐标差已超过当前d,break,判断下一个点if t[j].y-t[i].y>dbreakif dis(t[i],t[j])<d //如果当前点距离小于等于当前d,则对最小距离d进行更新d=dis(t[i],t[j])a2=t[i]b2=t[j]return d //返回当前分治的最小距离

        运行结果如下(取其中两例):两种方法求得的最近距离一致(虽然不一定是同一对点),且分治法更快。可见算法查找正确。

五、实验结果和分析

        分别对N=100000~1000000,统计算法运行时间,比较理论效率与实测效率的差异,同时对蛮力法和分治法的算法效率进行分析和比较。

        这里修改了代码,对每个规模N均运行5趟取平均时间。

算法

规模N:

5000

10000

20000

30000

50000

70000

100000

蛮力法

实测效率/s

0.334

1.2372

4.7186

10.0754

30.1722

59.1302

120.953

理论效率/s

0.3076

1.2304

4.9216

11.0736

30.76

60.2896

123.04

                                                                             表1

算法

规模N:

50000

100000

200000

300000

500000

700000

1000000

分治法

实测效率/s

0.058

0.156

0.266

0.3618

0.726

1.012

1.44

理论效率/s

0.0601

0.1278

0.271

0.42

0.7283

1.0458

1.5336

        对于蛮力法,

                                                                 T实测=k·n2实测      

                                                                 T理论=k·n2理论

        所以可得                                       

                                                        T理论=T实测·(n理论/n实测)2

        根据上式,以N=10000为基准,求出蛮力法的理论效率。

        对于分治法

                                                                T实测=k·n实测lgn实测      

                                                                T理论=k·n理论lgn理论

        所以可得           

                                                T理论=T实测·(n理论·lgn理论)/(n实测·lgn实测)

        根据上式,以N=100000为基准,求出分治法的理论效率。

        作出蛮力法的实测效率和理论效率曲线图如下:

        可以看出,实测效率和理论效率曲线贴合度很高,也都符合n2二次曲线。n=100000时的时间消耗,基本约为n=10000时的100倍。

        作出分治法的实测效率和理论效率的曲线图如下:

        可以看出,分治法的实测曲线和理论曲线贴合度还行,但没有蛮力法的两条贴合度高,可能是由于实验次数不够大(只进行5次取平均)。符合nlgn型曲线走势。

        对比两种方法,分治法效率明显由于蛮力法,尤其是当规模N持续增大时。

这篇关于算法设计与分析:分治法求最近点对问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082051

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明