C++蓝白点思想Prim算法(最小生成树 - 懒猫老师)

2024-06-21 17:38

本文主要是介绍C++蓝白点思想Prim算法(最小生成树 - 懒猫老师),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小生成树Prim算法(C++蓝白点思想)

  • 一、知识储备
    • 1.图的构造
    • 2.蓝白点思想
  • 二、代码实现

一、知识储备

  我们都知道,最小生成树的定义为:是原图的极小连通子图,包含图中所有结点,最重要的是保持图连通最少的边。❤️小白发文,若有不足欢迎大佬来斧正~

1.图的构造

  构造一个对象时,我们需要先了解清除其含有什么特征、什么特性,再去进行构造。在这里,图的构造也不例外,图具有多个顶点那我们就开辟个顶点数组,同时需要开辟个蓝白标记的数组(相当于两个集合的概念),需要个邻接矩阵储存图的边权,还需要知道创造图时所需的顶点数、边数。 好了说了一堆废话,让我们讲下一个吧💥

2.蓝白点思想

  ☁️所谓蓝白点思想,无非跟你们看死板的书所说的集合类似,但是蓝白点思想更加形象,白点代表已经用Prim方法连通了的结点,而蓝点则代表需要连通的结点。 每洗白一个蓝点,就需要更新每个蓝点到白点集团的最小值。下面展示的是简单例子部分洗白过程图:
在这里插入图片描述

二、代码实现

  🌟注:该代码实现的结点vertex是char型,有需要可自行修改类型,后续有时间会为 实现构造出一颗最小生成树(树的结构) 再更新文章。

#include <iostream>
#include <algorithm>
#define ll 9999			//相当于无穷大using namespace std;struct AMGraph
{char *vertices;    //顶点表    int *visited;      //蓝白点标志int **arcWeight;    //邻接矩阵int currVex, currArc;       //当前的顶点数 、边数
};int get_Index(const AMGraph &G, char u)
{for(int i = 0; i < G.currVex; i++)if(u == G.vertices[i]) return i;	//获得顶点在顶点数组中的下标return -1;
}void createUND(AMGraph &G)
{cout << "输入图的顶点个数和边数:";cin >> G.currVex >> G.currArc;G.vertices = new char[G.currVex];G.visited = new int[G.currVex];cout << "输入顶点的值(char类型):";for(int i = 0; i < G.currVex; i++){cin >> G.vertices[i];}//动态邻接矩阵开辟空间,同时进行初始化G.arcWeight = new int*[G.currVex];for(int i = 0; i < G.currVex; i++){G.arcWeight[i] = new int[G.currVex];for(int j = 0; j < G.currVex; j++)if(i == j) G.arcWeight[i][j] = 0;	//邻接矩阵中主对角线全为0,即结点到自己的边初始化为0else G.arcWeight[i][j] = ll;		//除了上条语句情况其余邻接矩阵的位置的权值初始化为无穷大}fill(G.visited, G.visited+G.currVex, 1);	//填充一维数组,初始化每个顶点的标记都为1(即蓝点)char v1, v2;int i, j, power;cout << "输入哪两个顶点对应的边权值是多少:";for(int k = 0; k < G.currArc; k++){cin >> v1 >> v2 >> power;i = get_Index(G, v1);j = get_Index(G, v2);G.arcWeight[i][j] = power;		//这里是 i 行 j 列G.arcWeight[j][i] = power;		//这里是 j 列 i 行}return;
}void Prim(AMGraph& G)
{int Min[G.currVex];fill(Min, Min+G.currVex, ll);Min[0] = ll;		// min[0]定义为无穷大才能实现每 i 轮的 Min 的初始化int MST = 0;cout << "洗白点的顺序:";for(int i = 0; i < G.currVex; i++){int w = 0;for(int j = 0; j < G.currVex; j++)if(G.visited[j] && Min[w] > Min[j]) {  //找出当前离白点集团最近的蓝点w = j;}G.visited[w] = 0;       //洗白cout << G.vertices[w] << "  ";if(w != 0)      // 权值累加时排除刚开始节点的权值(因为刚开始的节点权值为无穷大 ll)MST += Min[w];      //权值累加for(int k = 0; k < G.currVex; k++)if(G.visited[k] && G.arcWeight[w][k] < Min[k]){Min[k] = G.arcWeight[w][k]; //更新每个蓝点到白点集团的最小值}}cout << endl;cout << "连通图最小边权总和:" << MST << endl;
}int main()
{AMGraph G;		//构造图createUND(G);	//初始化无向图Prim(G);return 0;
}

在这里插入图片描述

Input
输入图的顶点个数和边数:6 10
输入顶点的值(char类型):A B C D E F
输入哪两个顶点对应的边权值是多少:
A B 6
A C 1
A D 5
B C 5
B E 3
C E 6
C D 5
D F 2
E F 6
C F 4
  
Output
洗白点的顺序:A C F D B E
连通图最小边权总和:15


  2022年1月8号更新:上面的思想用于加深理解,但算法竞赛中更常用下列算法模板,若有需要可继续往下看。
👉对应题目:2021年蓝桥杯十二届B组第二次题目——城邦
👉模板练习:最小生成树

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
const int N = 2030, M = N * N / 2;int n = 2021;
int g[N][N];        // g[i][j] 表示点i和点j之间边的长度
int dist[N];        // dist[i] 表示点i到当前集合的最短边的长度
bool st[N];         // st[i] 表示点i是否在当前生成树集合中int get(int x, int y){int res = 0;while(x || y){int a = x % 10, b = y % 10;if(a != b) res += a + b;x /= 10, y /= 10;}return res;
}int prim()
{int res = 0;memset(dist, 0x3f, sizeof dist);dist[1] = 0;for(int i = 1; i <= n; i++){		//迭代n次int t = -1;for(int j = 1; j <= n; j++)		//当前蓝点集合中所有距离白点最小的点if(!st[j] && (t == -1 || dist[j] < dist[t]))t = j;		//此时t存得是当前距离集合最小得点st[t] = true;//当前点不是第一个点,并且当前距离最近的点到集合距离是正无穷,因此该图不联通if(i != 1 && dist[t] == INF) return INF;//这里和上面其实可以不用判断当前是否为第一个点,因为我们将dist[1] = 0;//如果未dist[1]初始化,则要判断是否为第一个点if(i != 1) res += dist[t];for(int j = 1; j <= n; j++)if(!st[j]) dist[j] = min(dist[j], g[t][j]);	    //dist[i]代表着i到集合的距离,与dijkstra不同}return res;
}int main(){memset(g, 0x3f, sizeof g);for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++){if(i == j) continue;g[i][j] = g[j][i] = get(i, j);}cout << prim() << endl;return 0;
}

  
路漫漫其修远兮,吾将上下而求索

这篇关于C++蓝白点思想Prim算法(最小生成树 - 懒猫老师)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081890

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取