量化系统--开源强大的qmt交易系统,提供源代码

2024-06-21 15:36

本文主要是介绍量化系统--开源强大的qmt交易系统,提供源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

经过的3天终于写完了qmt_trader的文档了开源直接使用我开源了全部源代码

文档地址 https://gitee.com/li-xingguo11111/qmt_trader

图片

图片

图片

图片

图片

源代码from qmt_trader.qmt_trader import qmt_trader

from qmt_trader.xtquant.xttype import StockAccountfrom qmt_trader.xtquant import xtconstanttrader=qmt_trader(path= r'D:/国金QMT交易端模拟/userdata_mini',                  session_id = 123456,account='55011917',account_type='STOCK',                  is_slippage=True,slippage=0.01)#链接trader.connect()position=trader.position()print(position)account=trader.balance()print(account)

输出的结果

链接qmt0持仓数量: 9   账号类型      资金账号    证券代码   股票余额   可用余额     成本价   参考成本价        市值0     2  55011917  513100  26600  26600   1.441   1.441   38889.21     2  55011917  513400    100    100   1.050   1.050      99.92     2  55011917  513850   7800   7800   1.279   1.279    9991.83     2  55011917  600031    400    400  19.165  19.165    6328.04     2  55011917  159655   6800   6800   1.462   1.462   10077.65     2  55011917  159687    100    100   1.300   1.300     125.56     2  55011917  159937    300    300   5.418   5.418    1590.37     2  55011917  161128  24600  24600  48.988  48.988  130183.28     2  55011917  164824  28900  28900  12.689  12.689   46066.6   账号类型      资金账户         可用金额  冻结金额      持仓市值          总资产0     2  55011917  18356536.56   0.0  243352.1  18599859.76

图片

实盘交易框架模板

from qmt_trader.qmt_trader import qmt_traderfrom qmt_trader.qmt_data import qmt_datafrom qmt_trader.trader_tool import tdx_indicatorimport schedulefrom datetime import datetimeimport timeimport pandas as pdclass my_trader:    def __init__(self,path= r'D:/国金QMT交易端模拟/userdata_mini',                  session_id = 123456,account='55011917',account_type='STOCK',                  is_slippage=True,slippage=0.01,test=True):        '''        实时分钟T0策略利用实盘交易框架2.0        均线金叉买入死差卖出        '''        self.path=path        self.session_id=session_id        self.account=account        self.account_type=account_type        self.is_slippage=is_slippage        self.slippage=slippage        self.test=test        #买入的目标金额        self.buy_max_value=10000        #卖出的目标金额        self.sell_max_value=0        #股票列表        self.code_list=['159937','159980','159985','159981']        #5分,特别提醒这个参数和获取数据的速度有关系默认是3秒一次数据,        # 如果是3秒5分钟就等于3*20*5,short_line=100,这个我后面检验一下        self.short_line=5        #10分钟        self.long_line=10        self.trader=qmt_trader(path=self.path,account=self.account,account_type=self.account_type,                            is_slippage=self.is_slippage,slippage=self.slippage)        self.data=qmt_data()        #调整股票代码        self.stock_list=[]        for stock in self.code_list:            self.stock_list.append(self.trader.adjust_stock(stock=stock))        #订阅一分钟的数据,需要更快的话可以订阅tick数据        for stock in self.stock_list:            self.data.subscribe_quote(stock_code=stock,period='1m',start_time='20240101',                                      end_time='20500101',count=-1)    def connact(self):        '''        链接qmt        '''        try:            self.trader.connect()            print(self.trader.balance())            print(self.trader.position())            return True        except Exception as e:            print("运行错误:",e)            print('{}连接失败'.format('qmt'))            return False    def trader_func(self):        '''        交易函数        '''        #检查是否是交易时间        if self.trader.check_is_trader_date_1(trader_time=4,start_date=9,end_date=14,start_mi=0,jhjj='否'):            #读取订阅数据            df=self.data.get_market_data_ex(stock_list=self.stock_list,period='1m',                                            start_time='20240101',end_time='20500101',count=-1)            #解析数据            for stock in self.stock_list:                data=pd.DataFrame()                hist=df[stock]                data['date']=hist.index                data['close']=hist['close'].tolist()                data['short_line']=data['close'].rolling(self.short_line).mean()                data['long_line']=data['close'].rolling(self.long_line).mean()                #测试函数                data['test']=data['short_line']>data['long_line']                #金叉                if self.test:                    #测试交易                    gold_fork=data['test'].tolist()[-1]                else:                    gold_fork=tdx_indicator.CROSS_UP(S1=data['short_line'],S2=data['long_line'])[-1]                                #死叉                if self.test:                    dead_fork=data['test'].tolist()[-1]                else:                    dead_fork=tdx_indicator.CROSS_DOWN(S1=data['short_line'],S2=data['long_line'])[-1]                                #买入                if gold_fork==True:                    #买入                    stock=self.trader.adjust_stock(stock=stock)                    price=self.data.get_full_tick(code_list=[stock])[stock]['lastPrice']                    stock=stock[:6]                    trader_type,trader_amount,price=self.trader.order_target_value(stock=stock,price=price,value=self.buy_max_value)                    if trader_type=='buy' and trader_amount>=10:                        self.trader.buy(security=stock,amount=trader_amount,price=price)                        print('{} 死叉 买入 股票{} 数量{} 价格{}'.format(datetime.now(),stock,trader_amount,price))                    elif trader_type=='sell' and trader_amount>=10:                        self.trader.sell(security=stock,amount=trader_amount,price=price)                        print('持有买多了平部分{} 卖出 股票{} 数量{} 价格{}'.format(datetime.now(),stock,trader_amount,price))                    else:                        print('{} 触发金叉{}执行买入不了'.format(datetime.now(),stock))                else:                    print('{} 没有触发金叉{}'.format(datetime.now(),stock))                if dead_fork==True:                    #卖出                    stock=self.trader.adjust_stock(stock=stock)                    price=self.data.get_full_tick(code_list=[stock])[stock]['lastPrice']                    stock=stock[:6]                    trader_type,trader_amount,price=self.trader.order_target_value(stock=stock,price=price,value=self.sell_max_value)                    if trader_type=='sell' and trader_amount>=10:                        self.trader.sell(security=stock,amount=trader_amount,price=price)                        print('{} 死叉 卖出 股票{} 数量{} 价格{}'.format(datetime.now(),stock,trader_amount,price))                    else:                        print('{} 触发死叉{}执行卖出不了'.format(datetime.now(),stock))                else:                    print('{} 没有触发死叉{}'.format(datetime.now(),stock))        else:            print('{}目前不少交易时间'.format(datetime.now()))if __name__=='__main__':    trader=my_trader(path= r'D:/国金QMT交易端模拟/userdata_mini',                  session_id = 123456,account='55011917',account_type='STOCK',                  is_slippage=True,slippage=0.01,test=False)    trader.connact()    #3秒    schedule.every(0.05).minutes.do(trader.trader_func)    while True:        schedule.run_pending()        time.sleep(1)

这篇关于量化系统--开源强大的qmt交易系统,提供源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081619

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

Linux系统中配置静态IP地址的详细步骤

《Linux系统中配置静态IP地址的详细步骤》本文详细介绍了在Linux系统中配置静态IP地址的五个步骤,包括打开终端、编辑网络配置文件、配置IP地址、保存并重启网络服务,这对于系统管理员和新手都极具... 目录步骤一:打开终端步骤二:编辑网络配置文件步骤三:配置静态IP地址步骤四:保存并关闭文件步骤五:重

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

Nginx配置系统服务&设置环境变量方式

《Nginx配置系统服务&设置环境变量方式》本文介绍了如何将Nginx配置为系统服务并设置环境变量,以便更方便地对Nginx进行操作,通过配置系统服务,可以使用系统命令来启动、停止或重新加载Nginx... 目录1.Nginx操作问题2.配置系统服android务3.设置环境变量总结1.Nginx操作问题

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网