OCR资源分享|综述、论文、代码、数据集、博客、线上服务什么都有

2024-06-21 09:58

本文主要是介绍OCR资源分享|综述、论文、代码、数据集、博客、线上服务什么都有,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【导读】OCR相关的资源,综述、论文、代码、数据集、博客、在线服务等等,应有尽有,作者整理的非常的全面。

项目地址:

https://github.com/tangzhenyu/Scene-Text-Understanding

场景文字理解

综述

  • [2015-PAMI] Text Detection and Recognition in Imagery: A Survey `paper`

  • [2014-Front.Comput.Sci] Scene Text Detection and Recognition: Recent Advances and Future Trends `paper`

场景文字检测

  • [2018-CPVR] Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation [Paper]

  • [2018-arxiv] PixelLink: Detecting Scene Text via Instance Segmentation [Paper]

  • [2018-AAAI] SEE: Towards Semi-Supervised End-to-End Scene Text Recognition [Paper]

  • [2018-arxiv] TextBoxes++: A Single-Shot Oriented Scene Text Detector[Paper]

  • [2017-arxiv] Attention-based Extraction of Structured [Paper]

  • [2017-ICCV]Single Shot TextDetector with Regional Attention [Paper]

  • [2017-ICCV]WordSup: Exploiting Word Annotations for Character based Text Detection [Paper]

  • [2017-arXiv]R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection[Paper]

  • [2017-CVPR]EAST: An Efficient and Accurate Scene Text Detector [Paper] [Code]

  • [2017-arXiv]Cascaded Segmentation-Detection Networks for Word-Level Text Spotting[Paper]

  • [2017-arXiv]Deep Direct Regression for Multi-Oriented Scene Text Detection [Paper]

  • [2017-CVPR]Detecting oriented text in natural images by linking segments [Paper]

  • [2017-CVPR]Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection [Paper]

  • [2017-arXiv]Arbitrary-Oriented Scene Text Detection via Rotation Proposals [Paper]

  • [2017-AAAI]TextBoxes: A Fast Text Detector with a Single Deep Neural Network[Paper][Code]

  • [2016-arXiv]Accurate Text Localization in Natural Image with Cascaded Convolutional TextNetwork [Paper]

  • [2016-arXiv]DeepText : A Unified Framework for Text Proposal Generation and Text Detectionin Natural Images [Paper][Data]

  • [2017-PR]TextProposals: a Text-specific Selective Search Algorithm for Word Spotting in the Wild [paper] [code]

  • [2016-arXiv] Scene Text Detection via Holistic, Multi-Channel Prediction [Paper]

  • [2016-CVPR] CannyText Detector: Fast and Robust Scene Text Localization Algorithm [Paper]

  • [2016-CVPR]Synthetic Data for Text Localisation in Natural Images[Paper] [Data] [Code]

  • [2016-ECCV]Detecting Text in Natural Image with Connectionist Text Proposal Network[Paper] [Demo][Code]

  • [2016-TIP]Text-Attentional Convolutional Neural Networks for Scene Text Detection[Paper]

  • [2016-IJDAR]TextCatcher: a method to detect curved and challenging text in natural scenes[Paper]

  • [2016-CVPR]Multi-oriented text detection with fully convolutional networks[Paper]

  • [2015-TPRMI]Real-time Lexicon-free Scene Text Localization and Recognition

  • [2015-CVPR]Symmetry-Based Text Line Detection in Natural Scenes

  • [2015-ICCV]FASText: Efficient unconstrained scene text detector [Paper]https://github.com/MichalBusta/FASText

  • [2015-D.PhilThesis] Deep Learning for Text Spotting [Paper]

  • [2015 ICDAR]Object Proposals for Text Extraction in the Wild [Paper]https://github.com/lluisgomez/TextProposals

  • [2014-ECCV] Deep Features for Text Spotting [Paper]https://bitbucket.org/jaderberg/eccv2014_textspottinghttps://bitbucket.org/jaderberg/eccv2014_textspotting http://gitxiv.com/posts/uB4y7QdD5XquEJ69c/deep-features-for-text-spotting

  • [2014-TPAMI] Word Spotting and Recognition with Embedded Attributes [Paper]http://www.cvc.uab.es/~almazan/index/projects/words-att/index.htmlhttps://github.com/almazan/watts

  • [2014-TPRMI]Robust Text Detection in Natural Scene Images

  • [2014-ECCV] Robust Scene Text Detection with Convolution Neural Network Induced MSER Trees [Paper]

  • [2013-ICCV] Photo OCR: Reading Text in Uncontrolled Conditions [Paper]

  • [2012-CVPR]Real-time scene text localization and recognition [Paper]

  • [2010-CVPR]Detecting Text in Natural Scenes with Stroke Width Transform [Paper]

场景文字识别

  • [2017-ICCV] WeText: Scene Text Detection under Weak Supervision [Paper]

  • [2017-ICCV] Single Shot Text Detector with Regional Attention [Paper] [Code]

  • [2017-ICCV] Self-organized Text Detection with Minimal Post-processing via Border Learning [Paper]

  • [2017-ICCV] Focusing Attention: Towards Accurate Text Recognition in Natural Images [Paper]

  • [2017-ICCV] Towards End-to-end Text Spotting with Convolutional Recurrent Neural Networks [Paper]

  • [2017-CVPR] Unambiguous Text Localization and Retrieval for Cluttered Scenes [Paper]

  • [2017-ICCV] WordSup: Exploiting Word Annotations for Character based Text Detection [Paper]

  • [2017-ICCV] Deep TextSpotter: An End-to-End Trainable Scene Text Localization and Recognition Framework [Paper][Code]

  • [2017-arXiv] Cascaded Segmentation-Detection Networks for Word-Level Text Spotting [Paper]

  • [2017-AAAI] Detection and Recognition of Text Embedding in Online Images via Neural Context Models [Paper] [Code]

  • [2017-arXiv] Improving Text Proposal for Scene Images with Fully Convolutional Networks [Paper]

  • [2017-AAAI] TextBoxes: A Fast TextDetector with a Single Deep Neural Network [Paper] [Code] `github 代码`

  • [2017-CVPR] Detecting Oriented Text in Natural Images by Linking Segments [Paper]

  • [2017-arXiv] Arbitrary-Oriented Scene Text Detection via Rotation Proposals [Paper]

  • [2017-CVPR] Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection [Paper]

  • [2016-arXiv] DeepText:A Unified Framework for Text Proposal Generation and Text Detection in Natural Images [Paper]

  • [2017-arvix ] Full-Page TextRecognition : Learning Where to Start and When to Stop https://arxiv.org/pdf/1704.08628.pdf

  • [2016-AAAI]Reading Scene Text in Deep Convolutional Sequences [Paper]

  • [2016-IJCV]Reading Text in the Wild with Convolutional Neural Networks [Paper]http://zeus.robots.ox.ac.uk/textsearch/#/search/http://www.robots.ox.ac.uk/~vgg/research/text

  • [2016-CVPR]Recursive Recurrent Nets with Attention Modeling for OCR in the Wild [Paper]

  • [2016-CVPR] Robust Scene Text Recognition with Automatic Rectification [Paper]

  • [2016-NIPs] Generative Shape Models: Joint Text Recognition and Segmentation with Very Little Training Data [Paper]

  • [2015-CoRR] AnEnd-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition [Paper]https://github.com/bgshih/crnn

  • [2015-ICDAR]Automatic Script Identification in the Wild [Paper]

  • [2015-ICLR] Deep structured output learning for unconstrained text recognition [Paper]

  • [2014-NIPS]Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition [Paper]http://www.robots.ox.ac.uk/~vgg/publications/2014/Jaderberg14c/http://www.robots.ox.ac.uk/~vgg/research/text/model_release.tar.gz

  • [2014-TIP] A Unified Framework for Multi-Oriented Text Detection and Recognition

  • [2012-ICPR]End-to-End Text Recognition with Convolutional Neural Networks [Paper]http://cs.stanford.edu/people/twangcat/ICPR2012_code/SceneTextCNN_demo.tar http://ufldl.stanford.edu/housenumbers/

博士论文

  • [2016-PhD Thesis] Context Modeling for Semantic Text Matching and Scene Text Detection [Paper]

  • [2015-PhD Thesis] Deep Learning for Text Spotting [Paper]

  • [2012-PhD thesis] End-to-End Text Recognition with Convolutional Neural Networks [Paper]

文字检测

  • [2018-arxiv] TextBoxes++: A Single-Shot Oriented Scene Text Detector [Paper]

数据集

PowerPoint Text Detection and Recognition Dataset 2017

COCO-Text (ComputerVision Group, Cornell) 2016

  • 63,686images, 173,589 text instances, 3 fine-grained text attributes.

  • Task:text location and recognition

COCO-Text API

Synthetic Data for Text Localisation in Natural Image (VGG)2016

  • 800k thousand images

  • 8 million synthetic word instances

  • download

Synthetic Word Dataset (Oxford, VGG) 2014

  • 9million images covering 90k English words

  • Task:text recognition, segmentation

  • download

IIIT 5K-Words 2012

  • 5000images from Scene Texts and born-digital (2k training and 3k testing images)

  • Eachimage is a cropped word image of scene text with case-insensitive labels

  • Task:text recognition

  • download

StanfordSynth(Stanford, AI Group) 2012

  • Small single-character images of 62 characters (0-9, a-z, A-Z)

  • Task:text recognition

  • download

MSRA Text Detection 500 Database(MSRA-TD500) 2012

  • 500 natural images(resolutions of the images vary from 1296x864 to 1920x1280)

  • Chinese,English or mixture of both

  • Task:text detection

Street View Text (SVT) 2010

  • 350 high resolution images (average size 1260 × 860) (100 images for training and 250 images for testing)

  • Only word level bounding boxes are provided with case-insensitive labels

  • Task:text location

KAIST Scene_Text Database 2010

  • 3000 images of indoor and outdoor scenes containing text

  • Korean,English (Number), and Mixed (Korean + English + Number)

  • Task:text location, segmentation and recognition

Chars74k 2009

  • Over 74K images from natural images, as well as a set of synthetically generatedcharacters

  • Smallsingle-character images of 62 characters (0-9, a-z, A-Z)

  • Task:text recognition

  • ICDAR Benchmark Datasets

DatasetDiscriptionCompetition Paper
ICDAR 20151000 training images and 500 testing imagespaper
640?wx_fmt=jpeg
ICDAR 2013229 training images and 233 testing imagespaper
640?wx_fmt=jpeg
ICDAR 2011229 training images and 255 testing imagespaper
640?wx_fmt=jpeg
ICDAR 20051001 training images and 489 testing imagespaper
640?wx_fmt=jpeg
ICDAR 2003181 training images and 251 testing images(word level and character level)paper
640?wx_fmt=jpeg

博客

  • Scene Text Detection with OpenCV 3

  • Handwritten numbers detection and recognition

  • Applying OCR Technology for Receipt Recognition

  • Convolutional Neural Networks for Object(Car License) Detection

  • Extracting text from an image using Ocropus

  • Number plate recognition with Tensorflow [github]

  • Using deep learning to break a Captcha system `report` [github]

  • Breaking reddit captcha with 96% accuracy [github]

线上服务

NameDescription
Online OCRAPI,Free
Free OCRAPI,Free
New OCRAPI,Free
ABBYY FineReader OnlinenonAPI,free

开源代码

  • Tesseract c++ based tools for documents analysis and OCR [code]

  • Ocropy: Python-based tools for document analysis and OCR https://github.com/tmbdev/ocropy

  • CLSTM A small implementation of LSTM networks,focused on OCR https://github.com/tmbdev/clstm

  • Convolutional Recurrent Neural Network Torch7 https://github.com/bgshih/crnn

  • Attention-OCR Visual Attention based OCR https://github.com/da03/Attention-OCR

  • Umaru: An OCR-system based on torch using the technique of LSTM/GRU-RNN, CTC and referred to the works of rnnlib and clstm https://github.com/edward-zhu/umaru

  • AKSHAYUBHAT/DeepVideoAnalytics (CTPN+CRNN) code

  • ankush-me/SynthText code

  • JarveeLee/SynthText_Chinese_version code

手写识别
  • [2016-arXiv]Drawingand Recognizing Chinese Characters with Recurrent Neural Network https://arxiv.org/abs/1606.06539

  • Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition https://arxiv.org/abs/1610.02616

  • Stroke Sequence-Dependent Deep Convolutional Neural Network for Online Handwritten Chinese Character Recognitionhttps://arxiv.org/abs/1610.04057

  • High Performance Offline Handwritten Chinese Character Recognition Using GoogLeNet and Directional Feature Mapshttp://arxiv.org/abs/1505.04925">

  • DeepHCCR:Offline Handwritten Chinese Character Recognition based on GoogLeNet and AlexNet (With CaffeModel)

    https://github.com/chongyangtao/DeepHCCR">

  • Scan,Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTMAttentionhttp://arxiv.org/abs/1604.03286

  • MLPaint:the Real-Time Handwritten Digit Recognizer http://blog.mldb.ai/blog/posts/2016/09/mlpaint/

  • caffe-ocr: OCR with caffe deep learning framework https://github.com/pannous/caffe-ocr

证照识别
  • ReadingCar License Plates Using Deep Convolutional Neural Networks and LSTMs

  • Numberplate recognition with Tensorflow http://matthewearl.github.io/2016/05/06/cnn-anpr/

  • end-to-end-for-plate-recognition href="https://github.com/szad670401/end-to-end-for-chinese-plate-recognitionbhttp://rnd.azoft.com/applying-ocr-technology-receipt-recognition/


这篇关于OCR资源分享|综述、论文、代码、数据集、博客、线上服务什么都有的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080908

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来