2020年以来的图像分割进展:结构,损失函数,数据集以及框架

2024-06-21 08:58

本文主要是介绍2020年以来的图像分割进展:结构,损失函数,数据集以及框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Derrick Mwiti

编译:ronghuaiyang

导读

给大家总结了2020年以来的图像分割领域的进展,包括了结构,损失函数,数据集以及框架。

在这篇文章中,我们将深入探讨使用深度学习的图像分割。我们将讨论:

  • 什么是图像分割,图像分割的两种主要类型

  • 图像分割的架构

  • 用于图像分割的损失函数

  • 框架,你可以用在你图像分割项目中

就让我们一探究竟吧。

什么是图像分割?

顾名思义,这是将一个图像分割成多个区块的过程。在这个过程中,图像中的每个像素都与一个目标类型相关联。图像分割主要有两种类型:语义分割和实例分割。

在语义分割中,同一类型的所有目标都使用一个类标签进行标记,而在实例分割中,相似的目标使用各自独立的标签。

图像分割架构

图像分割的基本架构包括编码器和解码器。

编码器通滤波器从图像中提取特征。解码器负责生成最终的输出,通常是一个包含目标轮廓的分割掩码。大多数体系结构都有这种体系结构或其变体。

让我们看几个例子。

U-Net

U-Net是一种卷积神经网络,最初是为分割生物医学图像而开发的。当它可视化的时候,它的结构看起来像字母U,因此取名为U-Net。它的结构由两部分组成,左边部分是下采样路径,右边部分是上采样路径。下采样路径的目的是捕获上下文,而上采样路径的作用是帮助精确定位。

U-Net由右边的上采样路径和左边的下采样路径组成。下采样路径由两个3×3的卷积组成。卷积之后是一个ReLU和一个用于下采样的2x2的最大池化层。

你可以在这里找到U-Net的完整实现:https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/。

FastFCN — Fast Fully-connected network

在这个架构中,使用Joint Pyramid Upsampling(JPU)模块来代替空洞卷积,因为空洞卷积占用了很多的内存和计算时间。它的核心是一个全连接网络,同时使用JPU进行上采样。JPU将低分辨率特征图提升为高分辨率特征图。

如果你想亲自动手实现一些代码,这里:https://github.com/wuhuikai/FastFCN。

Gated-SCNN

该架构包括一个双流CNN架构组成。在这个模型中,一个单独的分支被用来处理图像形状信息。形状流用于处理边界信息。

代码:https://github.com/nv-tlabs/gscnn

DeepLab

在这种结构中,卷积与上采样滤波器用于密集预测的任务。多尺度物体的分割是通过空间金字塔池化来完成的。最后,使用DCNNs来改进物体边界的定位。通过插入零或对输入特征图进行稀疏采样来对滤波器进行上采样,从而实现Atrous卷积。

代码:https://github.com/fregu856/deeplabv3和https://github.com/sthalles/deeplab_v3。

Mask R-CNN

在这个架构中,使用包围框和语义分割对物体进行分类和本地化,并将每个像素分类到一组类别中去。每个感兴趣的区域都有一个分割掩码。最终的输出是一个类标签和一个包围框。该架构是Faster R-CNN的扩展。

这是在COCO测试集上得到的结果的图像。

代码:https://github.com/facebookresearch/Detectron

图像分割和损失函数

语义分割模型在训练过程中通常使用一个简单的交叉熵损失函数。但是,如果你对获取图像的细粒度信息感兴趣,则必须用到稍微高级一些的损失函数。

我们来看几个例子。

Focal Loss

这种损失是对标准交叉熵的改进。这是通过改变其形状来实现的,这样分类良好的类别的损失的权重会变小。最终,这确保了不存在类别不平衡。在这个损失函数中,交叉熵损失使用一个缩放因子来进行缩放,这个因子是随着对正确的类别的置信度的增加而从0处开始衰减的。这个比例因子自动降低了训练时简单样本的权重,并将重点放在困难样本上。

Dice loss

这个损失是通过计算光滑的(dice系数)的函数。这种损失最常用在分割问题上。

Interp over Union (IoU)-balanced Loss

IoU-balanced分类损失的目的是增加高IoU样本的梯度,降低低IoU样本的梯度。从而提高了机器学习模型的定位精度。

Boundary loss

boundary loss的一种变体应用于具有高度不平衡的segmentations的任务。这种损失的形式是空间等高线上的距离度量,而不是区域。通过这种方式,它解决了高度不平衡的分割任务的区域损失所带来的问题。

Weighted cross-entropy

在交叉熵的一种变体中,所有正样本都被一个确定的系数加权。它用于类别不平衡的情况。

Lovász-Softmax loss

该loss基于子模块损失的凸Lovasz扩展,对神经网络的平均IOU损失进行了直接优化。

其他值得一提的损失有:

  • TopK loss 其目的是确保网络在训练过程中聚焦于困难样本。

  • Distance penalized CE loss 这将网络引向难以分割的边界区域。

  • Sensitivity-Specificity (SS) loss 计算特异性和敏感性的均方根差的加权和。

  • Hausdorff distance(HD) loss 估计了卷积神经网络的Hausdorff距离。

这些只是在图像分割中使用的一些损失函数。要了解更多,请查看这个repo:https://github.com/JunMa11/SegLoss。

图像分割数据集

如果你还在这里,你可能会问自己从哪里可以得到一些数据集来开始。

让我们看几个。

Coco数据集

COCO是一个大型的物体检测、分割和描述数据集。数据集包含91个类。它有25万标注了关键点的人,下载大小是37.57 GiB,它包含80个物体类别。

PASCAL VOC

PASCAL有20个不同的类,9963张图片。训练/验证集是一个2GB的tar文件。数据集可从:http://host.robots.ox.ac.uk/pascal/VOC/voc2012/下载。

Cityscapes数据集

这个数据集包含城市场景的图像。该方法可用于评价视觉算法在城市场景中的性能。数据集可从:https://www.cityscapes-dataset.com/downloads/下载。

CamVid

这是一个基于动作的分割和识别数据集。它包含32个语义类。这个链接:http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/包含对数据集的进一步解释和下载链接。

图像分割框架

现在你已经准备好了可能的数据集,接下来让我们介绍一些可以用于入门的工具/框架。

  • FastAI library  —  给定一个图像,这个库能够创建图像中物体的掩码。

  • Sefexa Image Segmentation Tool  —  Sefexa是一个免费的工具,可以用于半自动图像分割,图像分析,并创建ground truth。

  • Deepmask —  Facebook的Deepmask是DeepMask 和 SharpMask的Torch实现。

  • MultiPath  —  这是一个来自 “A MultiPath Network for Object Detection”的物体检测网络的Torch实现.

  • OpenCV — 这是一个有超过2500个优化算法的开源计算机视觉库。

  • MIScnn — 是一个医学图像分割的开源库。它允许用最先进的卷积神经网络和深度学习模型在几行代码中建立管道。

  • Fritz:Fritz提供了多种计算机视觉工具,包括用于移动设备的图像分割工具。

—END—

英文原文:https://neptune.ai/blog/image-segmentation-in-2020

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

这篇关于2020年以来的图像分割进展:结构,损失函数,数据集以及框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080772

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c