比elbow方法更好的聚类评估指标

2024-06-21 08:48

本文主要是介绍比elbow方法更好的聚类评估指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Tirthajyoti Sarkar

编译:ronghuaiyang

导读

我们展示了用来可视化和决定最佳聚类数量的评估方法,要比最常用的elbow方法要好的多。

介绍

聚类是利用数据科学的商业或科研企业机器学习pipeline的重要组成部分。顾名思义,它有助于在一个数据blob中确定紧密相关(通过某种距离度量)的数据点的集合,否则就很难理解这些数据点。

然而,大多数情况下,聚类过程属于无监督机器学习。而无监督的ML则是一件混乱的事情。

没有已知的答案或标签来指导优化过程或衡量我们的成功。我们正处于一个未知的领域。

因此,当我们面对一个基本问题时,像k-means clustering]样的流行方法似乎不能提供一个完全令人满意的答案。

刚开始的时候,我们如何知道聚类的实际数量呢?

这个问题非常重要,因为聚类的过程通常是进一步处理单个聚类数据的前置问题,因此计算资源的数量可能依赖于这种度量。

在业务分析问题的情况下,后果可能更糟。聚类通常是为了市场细分的目标而进行的分析。因此,很容易想到,根据聚类的数量,对营销人员进行分配。因此,对聚类数量的错误评估可能导致宝贵资源的次优分配。

elbow方法

对于k-means聚类方法,回答这个问题最常用的方法是所谓的elbow 方法。它需要在一个循环中多次运行算法,聚类的数量不断增加,然后绘制聚类得分作为聚类数量的函数。

elbow法的分数或度量是什么?为什么它被称为'elbow'方法?一个典型的场景如下:

通常,得分是k-means目标函数上输入数据的度量,即某种形式的簇内距离相对于簇间距离。例如,在Scikit-learn的k-means estimator中,一个score 方法可用于此目的。

并不是那么明显,不是吗?

Silhouette coefficient — 一个更好的度量

Silhouette Coefficient是用每个样本的平均簇内距离a)和平均最近簇间距离(b)计算出来的。样本的轮廓系数为(b - a) / max(a, b)。为了澄清,b是该样本与该样本不属于的最近的群之间的距离。我们可以计算所有样本的平均Silhouette Coefficient,并以此作为判断集群数量的指标。

为了说明,我们使用Scikit-learn的make_blob 函数在4个特征维度和5个聚类中心上生成随机数据点。因此,这个问题的基本事实是,数据是在5个聚类中心附近生成的。然而,k-means算法无法知道这一点。

簇可以按如下方式绘制(成对特征):

接下来,我们运行k-means算法,选择k=2到k=12,计算每次运行的默认k-means得分和平均Silhouette Coefficient,并将它们并排绘制出来。

两者之间的区别再明显不过了。平均silhouette系数在k=5时增大,然后k值越大,平均silhouette系数急剧减小,即在k=5处有一个明显的峰值,这就是原始数据集生成的簇数。

silhouette系数与elbow法的平缓弯曲相比,表现出峰值特性。这更容易可视化和归因。

如果我们在数据生成过程中增加高斯噪声,簇看起来会更加重叠。

在本例中,elbow方法的默认k-means得分会产生相对不明确的结果。在下面的elbow图中,很难选择真正发生弯曲的合适点。是4、5、6还是7?

但silhouette系数图仍然能在4或5个聚类中心处出现峰值特征,使我们的判断更容易。

事实上,如果你回头看看重叠的簇,你会发现大多数情况下有4个可见的簇 —— 尽管数据是用5个聚类中心生成的,但由于高方差,只有4个簇在结构上显示出来。Silhouette系数可以很容易地捕捉到这种行为,并显示聚类的最佳数量在4到5之间。

BIC评分采用高斯混合模型

还有其他优秀的指标来确定的聚类的数量,比如Bayesian Information Criterion (BIC) ,但这些只有当我们希望用在k - means以外的聚类方法的时候才可以 ——  Gaussian Mixture Model (GMM)。

基本上,GMM将一个数据簇看作是具有独立均值和方差的多个高斯数据集的叠加。然后应用Expectation-Maximization (EM)算法来近似地确定这些平均值和方差。

把BIC作为正则化

你可能是从统计分析或你之前与线性回归的交互中认识到BIC这个术语。采用BIC和AIC (Akaike Information criteria)作为线性回归变量选择的正则化技术。

BIC/AIC用于线性回归模型的正则化。

这个想法在BIC中也有类似的应用。理论上,极其复杂的数据簇也可以建模为大量高斯数据集的叠加。为了这个目的,使用多少高斯函数没有限制。

但这与线性回归中增加模型复杂度类似,在线性回归中,可以使用大量特征来拟合任意复杂的数据,但却失去了泛化能力,因为过于复杂的模型拟合的是噪音,而不是真实的模式。

BIC方法惩罚了大的高斯函数数量,并试图使模型足够简单以解释给定的数据模式。

总结

这是这篇文章的notebook:https://github.com/tirthajyoti/computerlearing-with-python/blob/master/clustering-dimensions-reduction/clustering_metrics.ipynb,你可以试试。

对于经常使用的elbow方法,我们讨论了几个备选方案,用于使用k-means算法在无监督学习设置中挑选出正确数量的聚类。我们表明,Silhouette系数和BIC评分(来自k-means的GMM扩展)是比elbow方法更好的可视化识别最优簇数的方法。

—END—

英文原文:https://towardsdatascience.com/clustering-metrics-better-than-the-elbow-method-6926e1f723a6

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

这篇关于比elbow方法更好的聚类评估指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080751

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr