每日一题——4行Python代码实现PAT乙级1008 数组元素循环右移问题(举一反三+思想解读+逐步优化)四千字好文

本文主要是介绍每日一题——4行Python代码实现PAT乙级1008 数组元素循环右移问题(举一反三+思想解读+逐步优化)四千字好文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


一个认为一切根源都是“自己不够强”的INTJ

个人主页:用哲学编程-CSDN博客
专栏:每日一题——举一反三
Python编程学习
Python内置函数

Python-3.12.0文档解读

目录

​编辑我的写法

代码功能

时间复杂度分析

空间复杂度分析

总结

我要更强

方法一:使用循环移位

方法二:使用Python的deque

方法三:使用列表切片和拼接

总结

哲学和编程思想

1. 效率与简洁性的平衡

2. 空间与时间的权衡

3. 抽象与具体

4. 利用现有工具和库

5. 迭代与递归

总结

举一反三

1. 理解问题本质

2. 权衡时间与空间

3. 利用现有工具和库

4. 选择合适的数据结构

5. 编写可读性强的代码

6. 实践和反思

7. 学习和适应新技术


题目链接

我的写法

N,M=map(int,input().split())
nums=list(map(int,input().split()))
output=nums[N-M%N:]+nums[:N-M%N]
print(*output)

这段代码是Python语言编写的,主要功能是对一个列表进行循环移位操作。下面是对这段代码的点评和分析:

代码功能

  1. 输入处理:首先,代码通过input().split()获取用户输入的两个整数N和M,并使用map(int, ...)将其转换为整数。
  2. 列表处理:接着,代码再次使用input().split()获取用户输入的一系列整数,并同样使用map(int, ...)转换为整数列表nums。
  3. 循环移位:代码通过切片操作nums[N-M%N:] + nums[:N-M%N]实现对列表nums的循环移位。这里M%N确保了移位的步长不会超过列表的长度N。
  4. 输出结果:最后,使用print(*output)将移位后的列表元素以空格分隔的形式输出。

时间复杂度分析

  • 输入处理:map(int, input().split())的时间复杂度为O(N),其中N是输入的元素数量。
  • 列表处理:同样,map(int, input().split())的时间复杂度为O(N)。
  • 循环移位:切片操作的时间复杂度为O(N),因为需要复制列表的一部分。
  • 输出:print(*output)的时间复杂度为O(N),因为需要输出每个元素。

因此,总的时间复杂度为O(N)。

空间复杂度分析

  • 输入处理:空间复杂度为O(N),因为需要存储输入的整数。
  • 列表处理:空间复杂度为O(N),因为需要存储整数列表。
  • 循环移位:切片操作的空间复杂度为O(N),因为需要创建一个新的列表来存储移位后的结果。

总的空间复杂度为O(N)。

总结

这段代码简洁高效地实现了列表的循环移位功能,时间复杂度和空间复杂度均为O(N),适合处理中等大小的数据集。然而,如果列表非常大,切片操作可能会导致额外的内存使用,这在某些资源受限的环境中可能需要考虑优化。


我要更强

为了优化时间复杂度和空间复杂度,我们可以考虑不使用切片操作,因为切片操作会创建一个新的列表,这在处理大列表时可能会导致不必要的内存消耗。以下是几种优化方法:

方法一:使用循环移位

这种方法通过直接在原列表上操作,避免了创建新列表,从而优化了空间复杂度。

def rotate_list(nums, M):N = len(nums)M %= N  # 确保M在有效范围内# 使用循环移位for _ in range(M):last = nums[-1]for i in range(N - 1, 0, -1):nums[i] = nums[i - 1]nums[0] = lastreturn nums# 主程序
N, M = map(int, input().split())
nums = list(map(int, input().split()))
rotated_nums = rotate_list(nums, M)
print(*rotated_nums)

时间复杂度: O(N * M),因为每个元素可能需要移动M次。 空间复杂度: O(1),除了输入输出外,没有使用额外的空间。

方法二:使用Python的deque

Python的deque支持高效的插入和删除操作,可以用来优化循环移位。

from collections import dequedef rotate_list(nums, M):nums = deque(nums)nums.rotate(M)  # 使用deque的rotate方法return list(nums)# 主程序
N, M = map(int, input().split())
nums = list(map(int, input().split()))
rotated_nums = rotate_list(nums, M)
print(*rotated_nums)

时间复杂度: O(N),因为deque的rotate方法是O(N)的。 空间复杂度: O(N),因为创建了一个新的deque。

方法三:使用列表切片和拼接

虽然这种方法的空间复杂度较高,但代码简洁,易于理解。

def rotate_list(nums, M):N = len(nums)M %= N  # 确保M在有效范围内return nums[-M:] + nums[:-M]# 主程序
N, M = map(int, input().split())
nums = list(map(int, input().split()))
rotated_nums = rotate_list(nums, M)
print(*rotated_nums)

时间复杂度: O(N),因为切片和拼接操作都是O(N)的。 空间复杂度: O(N),因为创建了一个新的列表。

总结

每种方法都有其优缺点,选择哪种方法取决于具体的需求和上下文。如果空间不是问题,方法三可能是最简单和最直接的。如果需要优化空间使用,方法一和方法二可能更合适。


哲学和编程思想

这些方法体现了多种哲学和编程思想,具体包括:

1. 效率与简洁性的平衡

  • 方法一:使用循环移位的方法体现了直接性和效率,通过在原列表上直接操作,避免了额外的空间开销。这种方法强调了在解决问题时,直接操作数据以减少资源消耗的重要性。
  • 方法二:使用deque的方法则体现了利用现有数据结构的优势来简化问题解决过程。这种方法强调了在编程中,利用标准库和现有工具来提高代码的可读性和简洁性。
  • 方法三:使用切片和拼接的方法虽然简洁易懂,但可能会牺牲一些空间效率。这种方法体现了在编程中,简洁性和可读性有时比纯粹的效率更重要。

2. 空间与时间的权衡

  • 方法一:空间复杂度为O(1),时间复杂度为O(N * M),体现了在时间和空间之间的权衡,即通过牺牲时间效率来减少空间使用。
  • 方法二和方法三:空间复杂度为O(N),时间复杂度为O(N),体现了在某些情况下,为了提高时间效率,可以接受更高的空间复杂度。

3. 抽象与具体

  • 方法二:使用deque的rotate方法是一种抽象的解决方案,它隐藏了底层实现细节,使得代码更加简洁和易于理解。这种方法体现了在编程中,通过抽象来简化复杂问题的重要性。
  • 方法一和方法三:相比之下,这两种方法更具体,直接操作列表的元素或切片,这种方法体现了在某些情况下,直接和具体的操作可能更有效。

4. 利用现有工具和库

  • 方法二:使用Python的deque是一种利用现有工具的策略,这种方法体现了在编程中,利用标准库和框架可以大大提高开发效率和代码质量。

5. 迭代与递归

  • 方法一:使用循环来实现移位操作,这是一种迭代的方法。迭代是编程中常用的技术,特别是在处理可迭代对象时。
  • 方法二和方法三:虽然不是递归,但它们体现了通过组合现有操作(如切片和deque操作)来解决问题的思想。

总结

这些方法展示了在编程中,如何根据问题的具体需求和上下文,选择合适的策略和技术。每种方法都有其适用的场景,理解这些方法背后的哲学和思想有助于更好地选择和应用它们。


举一反三

根据上述讨论的哲学和编程思想,以下是一些技巧和策略,可以帮助在编程中举一反三:

1. 理解问题本质

  • 分析需求:在开始编码之前,深入理解问题的需求和限制条件。这包括时间复杂度、空间复杂度、数据结构的选择等。
  • 抽象问题:尝试将问题抽象化,找出问题的核心要素,这有助于找到更通用的解决方案。

2. 权衡时间与空间

  • 优化策略:根据问题的具体需求,选择合适的优化策略。如果空间不是问题,可以考虑牺牲空间来换取时间效率。反之亦然。
  • 性能分析:使用性能分析工具来评估代码的效率,找出瓶颈,并针对性地进行优化。

3. 利用现有工具和库

  • 熟悉标准库:深入了解并熟练使用编程语言的标准库,如Python的collections、itertools等,这些库提供了许多高效的数据结构和算法。
  • 第三方库:对于特定领域的问题,查找并利用相关的第三方库,这些库通常提供了经过优化的解决方案。

4. 选择合适的数据结构

  • 数据结构选择:根据问题的特点选择合适的数据结构。例如,如果需要频繁的插入和删除操作,可以考虑使用链表或deque。
  • 自定义数据结构:在必要时,可以设计和实现自定义的数据结构来满足特定的需求。

5. 编写可读性强的代码

  • 代码风格:遵循一致的代码风格和命名规范,使代码易于阅读和理解。
  • 注释和文档:为关键的代码段添加注释,解释其功能和设计思路。编写文档来描述代码的整体结构和使用方法。

6. 实践和反思

  • 编码实践:通过实际编码来解决问题,实践是提高编程技能的最佳方式。
  • 代码审查:参与代码审查,从他人的代码中学习新的技巧和方法。
  • 反思总结:在解决问题后,回顾并总结所使用的方法和策略,思考如何将这些经验应用到未来的问题中。

7. 学习和适应新技术

  • 持续学习:技术不断发展,持续学习新的编程语言、框架和工具是必要的。
  • 适应变化:灵活适应技术变化,将新技术应用到实际问题中,提高解决问题的效率和质量。

通过这些技巧和策略,可以更好地理解和应用编程中的哲学和思想,从而在面对新问题时能够灵活应对,举一反三。


这篇关于每日一题——4行Python代码实现PAT乙级1008 数组元素循环右移问题(举一反三+思想解读+逐步优化)四千字好文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079863

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很