机器学习模型评估之校准曲线

2024-06-21 01:12

本文主要是介绍机器学习模型评估之校准曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型校准曲线(Calibration Curve),也称为可靠性曲线(Reliability Curve)或概率校准曲线(Probability Calibration Curve),是一种评估分类模型输出概率准确性的图形工具。它可以帮助我们理解模型的预测概率是否与实际标签的分布一致。校准曲线通常包括以下步骤:

  1. 计算模型预测概率:对于测试集中的每个样本,模型会输出一个概率值,表示样本属于正类的概率。

  2. 将数据分桶:将这些概率值分成若干个等宽的桶(例如10个桶),每个桶中的样本具有相似的预测概率。

  3. 计算每个桶的平均预测概率和实际正类比例:对于每个桶,计算桶内样本的平均预测概率和实际的正类比例(即标签为正的样本数除以桶内总样本数)。

  4. 绘制校准曲线:将每个桶的平均预测概率作为x轴,实际正类比例作为y轴,绘制散点图。理想情况下,这些点应该接近于一条斜率为1的直线,这表示模型的预测概率与实际标签完全一致。

  5. (可选)绘制理想校准曲线:绘制一条斜率为1的直线,作为理想校准曲线,以便与实际校准曲线进行比较。

在Python中,你可以使用scikit-learn库中的calibration模块来绘制校准曲线。以下是一个使用scikit-learn绘制校准曲线的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.calibration import calibration_curve
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.calibration import CalibratedClassifierCV# 生成数据集
X, y = make_classification(n_samples=10000, n_features=20,n_informative=2, n_redundant=10,random_state=42)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)# 训练模型
# 这里使用RandomForestClassifier作为基础分类器
# 使用CalibratedClassifierCV进行概率校准
clf = RandomForestClassifier(n_estimators=100, random_state=42)
calibrated_clf = CalibratedClassifierCV(clf, method='isotonic', cv=5)clf.fit(X_train, y_train)
calibrated_clf.fit(X_train, y_train)# 获取预测概率
probabilities = clf.predict_proba(X_test)[:, 1]
calibrated_probabilities = calibrated_clf.predict_proba(X_test)[:, 1]# 计算校准曲线
fraction_of_positives, mean_predicted_value = calibration_curve(y_test, probabilities, n_bins=10)
calibrated_fraction_of_positives, calibrated_mean_predicted_value = calibration_curve(y_test, calibrated_probabilities, n_bins=10)# 绘制校准曲线
plt.figure(figsize=(10, 10))
plt.plot(mean_predicted_value, fraction_of_positives, "s-", label="未校准 (Area = %0.2f)" % np.mean(np.abs(fraction_of_positives - mean_predicted_value)))
plt.plot(calibrated_mean_predicted_value, calibrated_fraction_of_positives, "s-", label="校准 (Area = %0.2f)" % np.mean(np.abs(calibrated_fraction_of_positives - calibrated_mean_predicted_value)))# 绘制理想校准曲线
plt.plot([0, 1], [0, 1], "k:", label="完美校准")# 设置图表
plt.xlabel("平均预测概率")
plt.ylabel("实际正类比例")
plt.title('校准曲线')
plt.legend(loc="lower right")
plt.show()

在这个例子中,我们首先创建了一个合成数据集,并使用RandomForestClassifier训练了一个基础分类器。然后,我们使用CalibratedClassifierCV对分类器进行了概率校准。接着,我们计算了测试集上的预测概率,并绘制了校准曲线。最后,我们展示了未校准和校准后的校准曲线,以及理想校准曲线,以便进行比较。

这篇关于机器学习模型评估之校准曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079792

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首