【可控图像生成系列论文(二)】MimicBrush 港大、阿里、蚂蚁集团合作论文解读2

本文主要是介绍【可控图像生成系列论文(二)】MimicBrush 港大、阿里、蚂蚁集团合作论文解读2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【可控图像生成系列论文(一)】简要介绍了论文的整体流程和方法,本文则将就整体方法模型结构训练数据纹理迁移进行详细介绍。

在这里插入图片描述

1.整体方法

MimicBrush 的整体框架如下图所示。为了实现模仿编辑,作者设计了一种具有双扩散模型的架构,并以自监督的方式进行训练。视频数据本身包含自然一致的内容,同时也展示了视觉变化,例如同一只狗的不同姿势。
在这里插入图片描述

  • 因此,作者从视频片段中随机选择两个帧作为 MimicBrush 的训练样本。一帧作为源图像,作者在其某些区域上进行遮罩。另一帧作为参考图像,帮助模型恢复被遮罩的源图像。
    • 通过这种方式,MimicBrush 学会了定位相应的视觉信息(例如狗的脸),并将其重新绘制到源图像的遮罩区域中。
    • 为了确保重新绘制的部分能够与源图像和谐融合,MimicBrush 还学习将视觉内容转移到相同的姿势、光照和视角下
    • 值得注意的是,这样的训练过程是基于原始视频片段进行的,不需要文本或跟踪注释,并且可以通过大量视频轻松扩展。
  • MimicBrush 利用双分支的 U-Nets,即模仿 U-Net 和参考 U-Net,分别以源图像和参考图像为输入。这两个 U-Nets 在注意力层中共享它们的键和值,并被训练以从参考图像中寻找指示来复原被遮罩的源图像。
    • 作者还对源图像和参考图像进行数据增强,以增加它们之间的区别。
    • 同时,从未被遮罩的源图像中提取深度图,并将其作为可选条件添加到模仿 U-Net 中。通过这种方式,在推理过程中,用户可以决定是否启用源图像的深度图,以保留原始源图像中物体的形状

2.模型结构

框架主要包括模仿 U-Net、参考 U-Net 和深度模型。

模仿 U-Net

  • 模仿 U-Net 是基于 stable diffusion-1.5-inpainting1 模型初始化的。它以一个具有 13 个通道的张量作为输入。
  • 图像潜变量(4 个通道)负责从初始噪声一步步扩散到输出潜变量代码。作者还连接了一个二进制遮罩(1 个通道)以指示生成区域,以及被遮罩源图像的背景潜变量(4 个通道)。此外,作者将深度图投射到一个(4 通道)深度潜变量,以提供形状信息。
  • 原始 U-Net 还通过交叉注意力接收 CLIP 2 文本嵌入作为输入。在本研究中,作者用从参考图像中提取的 CLIP 图像嵌入替换了它。
  • 按照之前的研究 3 4,作者在图像嵌入之后添加了一个可训练的投射层。为了简化图示,图 3 中未包含此部分。在训练期间,模仿 U-Net 和 CLIP 投射层的所有参数都是可优化的。

参考 U-Net

  • 最近,一些研究 5 6 7 8 9 10 证明了利用额外的 U-Net 从参考图像中提取细粒度特征的有效性。
  • 在本研究中,作者应用了类似的设计并引入了一个参考 U-Net。它是基于标准 stable diffusion-1.5 11 初始化的。它采用参考图像的 4 通道潜变量来提取多层次特征。
  • 参考 12,作者在中间和上采样阶段将参考特征注入模仿 U-Net,通过将其键和值与模仿 U-Net 连接起来,如下公式所示。
    Attention = softmax ( Q i ⋅ cat ( K i , K r ) T d k ) ⋅ cat ( V i , V r ) \text{Attention} = \text{softmax}\left( \frac{Q_i \cdot \text{cat}(K_i, K_r)^T}{\sqrt{d_k}} \right) \cdot \text{cat}(V_i, V_r) Attention=softmax(dk Qicat(Ki,Kr)T)cat(Vi,Vr)
  • 通过这种方式,模仿 U-Net 可以利用参考图像的内容来完成源图像的遮罩区域。

深度模型

  • 作者利用 Depth Anything 13 来预测未遮罩源图像的深度图作为形状控制,这使 MimicBrush 能够进行纹理迁移
  • 作者冻结了深度模型并添加了一个可训练的映射器,将预测的深度图(3 通道)投射到深度潜变量(4 通道)。
  • 在训练期间,作者设定以 0.5 的概率将深度模型的输入设为全零图。因此,用户在推理过程中可以选择是否启用形状控制。

3.训练数据

  • 训练数据选择的要点:
  1. 首先,保证源图像和参考图像之间存在对应关系
  2. 其次,作者预计源图像和参考图像之间会有很大的变化,这对于寻找视觉对应关系的稳健性至关重要。
  • 如何确保“对应关系”?(数据选择)
  1. 在训练过程中,作者对同一视频中的两帧进行采样。参考前人的研究14,作者使用SSIM 15作为衡量视频帧之间的相似性的指标。
  2. 作者丢弃相似性过大或过小的帧(图片)对,以确保所选图像对包含语义对应和视觉变化。
  • 训练数据来源:
  1. 作者从 Pexels 16 等开源网站收集了10万个高分辨率视频。
  2. 为了进一步扩大训练样本的多样性,还使用SAM 17数据集,该数据集包含1000万张图像和10亿个对象掩码。作者通过对来自SAM的静态图像应用强数据增强来构建伪帧,并利用对象分割结果来掩蔽源图像。
  3. 在训练期间,视频和SAM数据的采样部分为70%,而默认情况下为30%。

如上图所示,训练数据中的源图像和参考图像都通过了一定的数据增强后,再被分别送入 U-Net 中。

  • 那么具体的数据增强是如何做的?
  1. 为了增加源图像和参考图像之间的变化,作者施加了较强的数据增强。
  2. 除了应用激进的颜色抖动、旋转、调整大小和翻转外,作者还实现了随机投影变换来模拟更强的变形。

4. 评估任务-纹理迁移

在这里插入图片描述

  • 纹理迁移需要严格保持源对象的形状,并且仅迁移参考图像的纹理/图案。
  • 为此任务,作者启用了深度图作为附加条件。与寻求语义对应的部分组合不同,在此任务中作者对完整对象进行遮罩,因此模型只能发现纹理(参考)和形状(源)之间的对应关系。
  • 作者还制定了 inter-ID 和 inner-ID 两类。
    • 前者涉及30个来自Pexels 18 的具有大变形的样本,比如将豹纹迁移到图4中的帽子上。
    • 后者包含DreamBooth 19 数据集中额外的30个示例。作者遵循与部分组合相同的数据格式和评估指标。

  1. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In CVPR, 2022 ↩︎

  2. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision. In ICML, 2021. ↩︎

  3. X. Chen, L. Huang, Y. Liu, Y. Shen, D. Zhao, and H. Zhao. Anydoor: Zero-shot object-level image customization. CVPR, 2024. ↩︎

  4. H. Ye, J. Zhang, S. Liu, X. Han, and W. Yang. Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models. arXiv:2308.06721, 2023. ↩︎

  5. L. Zhang. Reference-only controlnet. https://github.com/Mikubill/sd-webui-controlnet/ discussions/1236, 2023. ↩︎

  6. L. Hu, X. Gao, P. Zhang, K. Sun, B. Zhang, and L. Bo. Animate anyone: Consistent and controllable image-to-video synthesis for character animation. CVPR, 2024. ↩︎

  7. Z. Xu, J. Zhang, J. H. Liew, H. Yan, J.-W. Liu, C. Zhang, J. Feng, and M. Z. Shou. Magicanimate: Temporally consistent human image animation using diffusion model. In CVPR, 2024. ↩︎

  8. M. Chen, X. Chen, Z. Zhai, C. Ju, X. Hong, J. Lan, and S. Xiao. Wear-any-way: Manipulable virtual try-on via sparse correspondence alignment. arXiv:2403.12965, 2024. ↩︎

  9. S. Zhang, L. Huang, X. Chen, Y. Zhang, Z.-F. Wu, Y. Feng, W. Wang, Y. Shen, Y. Liu, and P. Luo. Flashface: Human image personalization with high-fidelity identity preservation. arXiv:2403.17008, 2024. ↩︎

  10. Z. Xu, M. Chen, Z. Wang, L. Xing, Z. Zhai, N. Sang, J. Lan, S. Xiao, and C. Gao. Tunnel try-on: Excavating spatial-temporal tunnels for high-quality virtual try-on in videos. arXiv:2404.17571, 2024. ↩︎

  11. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In CVPR, 2022 ↩︎

  12. Z. Xu, J. Zhang, J. H. Liew, H. Yan, J.-W. Liu, C. Zhang, J. Feng, and M. Z. Shou. Magicanimate: Temporally consistent human image animation using diffusion model. In CVPR, 2024. ↩︎

  13. L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. In CVPR, 2024. ↩︎

  14. X. Chen, Z. Liu, M. Chen, Y. Feng, Y. Liu, Y. Shen, and H. Zhao. Livephoto: Real image animation with text-guided motion control. arXiv:2312.02928, 2023 ↩︎

  15. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. TIP, 2004. ↩︎

  16. The best free stock photos, royalty free images & videos shared by creators. https://www. pexels.com, 2024 ↩︎

  17. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al. Segment anything. In ICCV, 2023 ↩︎

  18. The best free stock photos, royalty free images & videos shared by creators. https://www. pexels.com, 2024 ↩︎

  19. N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In CVPR, 2023 ↩︎

这篇关于【可控图像生成系列论文(二)】MimicBrush 港大、阿里、蚂蚁集团合作论文解读2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079616

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.