文本相关性PM25算法

2024-06-20 23:32
文章标签 算法 文本 相关性 pm25

本文主要是介绍文本相关性PM25算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.       BM25算法

BM25是二元独立模型的扩展,其得分函数有很多形式,最普通的形式如下:

 

 

 

其中,k1,k2,K均为经验设置的参数,fi是词项在文档中的频率,qfi是词项在查询中的频率。

K1通常为1.2k2通常为0-1000

K的形式较为复杂

 

K=

 

上式中,dl表示文档的长度,avdl表示文档的平均长度,b通常取0.75

 

2.       BM25具体实现

由于在典型的情况下,没有相关信息,即rR都是0,而通常的查询中,不会有某个词项出现的次数大于1。因此打分的公式score变为

 

3.0

BM25算法,通常用来作搜索相关性平分。一句话概况其主要思想:对Query进行语素解析,生成语素qi;然后,对于每个搜索结果D,计算每个语素qi与D的相关性得分,最后,将qi相对于D的相关性得分进行加权求和,从而得到Query与D的相关性得分。

BM25算法的一般性公式如下:

 


 

其中,Q表示Query,qi表示Q解析之后的一个语素(对中文而言,我们可以把对Query的分词作为语素分析,每个词看成语素qi。);d表示一个搜索结果文档;Wi表示语素qi的权重;R(qi,d)表示语素qi与文档d的相关性得分。


 

下面我们来看如何定义Wi。判断一个词与一个文档的相关性的权重,方法有多种,较常用的是IDF。这里以IDF为例,公式如下:


其中,N为索引中的全部文档数,n(qi)为包含了qi的文档数。

根据IDF的定义可以看出,对于给定的文档集合,包含了qi的文档数越多,qi的权重则越低。也就是说,当很多文档都包含了qi时,qi的区分度就不高,因此使用qi来判断相关性时的重要度就较低。

我们再来看语素qi与文档d的相关性得分R(qi,d)。首先来看BM25中相关性得分的一般形式:


其中,k1,k2,b为调节因子,通常根据经验设置,一般k1=2,b=0.75;fi为qi在d中的出现频率,qfi为qi在Query中的出现频率。dl为文档d的长度,avgdl为所有文档的平均长度。由于绝大部分情况下,qi在Query中只会出现一次,即qfi=1,因此公式可以简化为:


 

从K的定义中可以看到,参数b的作用是调整文档长度对相关性影响的大小。b越大,文档长度的对相关性得分的影响越大,反之越小。而文档的相对长度越长,K值将越大,则相关性得分会越小。这可以理解为,当文档较长时,包含qi的机会越大,因此,同等fi的情况下,长文档与qi的相关性应该比短文档与qi的相关性弱。

综上,BM25算法的相关性得分公式可总结为:


从BM25的公式可以看到,通过使用不同的语素分析方法、语素权重判定方法,以及语素与文档的相关性判定方法,我们可以衍生出不同的搜索相关性得分计算方法,这就为我们设计算法提供了较大的灵活性。


 

1.       BM25算法

BM25是二元独立模型的扩展,其得分函数有很多形式,最普通的形式如下:

 

 

 

其中,k1,k2,K均为经验设置的参数,fi是词项在文档中的频率,qfi是词项在查询中的频率。

K1通常为1.2,通常为0-1000

K的形式较为复杂

 

K=

 

上式中,dl表示文档的长度,avdl表示文档的平均长度,b通常取0.75

 

2.       BM25具体实现

由于在典型的情况下,没有相关信息,即rR都是0,而通常的查询中,不会有某个词项出现的次数大于1。因此打分的公式score变为

 

 

3.  使用Lucene实现BM25

Lucene本身的打分函数集中体现在tf·idf

为了简化实现过程,直接将代码中tfidf函数的返回值修改为BM25打分公式的两部分。

文档的平均长度在索引建立的时候取得,同时在建立索引的过程中,将每个文档的docID与其长度,保存在一个hashMap中。

具体的函数实现如下(DefaulSimilarity类):

 

其中TermScore.temp为公式中K+fi的值

Temp的计算在TermScore类中进行计算:

   public float score() {

    assert doc != -1;

    int f = freqs[pointer];

    temp=(float)(1.2*(0.25+0.75*FileSearch.docToken.get(doc))+f);

   

    System.out.println("weightValue: "+weightValue);

    float raw =  getSimilarity().tf(f)*weightValue                                // compute tf(f)*weight

      //f < SCORE_CACHE_SIZE                        // check cache

      //? scoreCache[f]*temp                          // cache hit

      //: getSimilarity().tf(f)*weightValue*temp       // cache miss

     

      System.out.println("score func doc id :"+doc+" "+temp+" "+f+" "+ getSimilarity().tf(f));

      System.out.println("raw value is"+raw);

      return norms == null ? raw : raw SIM_NORM_DECODER[norms[doc] & 0xFF];

  }

  值得注意的是:在lucene的得分计算中,使用explain函数可以看出,除了tfidf的乘积之外,还有一个fieldNorm值,这个值的计算是基于索引的建立过程,与文档以及field的长度有关,综合考虑,这个值对于查询的过程还是比较有效的,因此在具体实现中,依然保存了fieldNorm的值。



BM25模型
      BM25模型是基于二元假设推导而出,考察词语在查询中的权值,拟合出综合上述考虑因素的公式,并通过引入一些经验参数。因此,BM25模型是淘宝中最常用也最重要的判断类目相关性的模型。以下是BM25模型计算公式
              公式中,对于查询Q中出现的每个查询词,依次计算单词在文档D中的分值,累加后就是文档D与查询Q的相关性得分。可以看出,计算第i个查询词的权值时,计算公司可以拆解为3个组成部分,第1个组成部分就是BIM模型计算得分,第2个组成部分是查询词在文档D中的权值,K1和K是经验参数,第3个组成部分是查询词自身的权值,如果查询较短小的话,这个值往往是1,k2是经验参数值。BM25模型就是融合了这3个计算因子的相关性计算公式。
       下面我们以用户查询“男士 牛仔裤”来看看如何实际利用BM25公式计算相关性,首先我们假定BM25的第一个计算因子中,我们不知道哪些是相关文档,所以讲相关文档个数R和包含查询词的相关文档个数r设定为0,此时第一个计算因子退化成:
    
      因为查询中,分词后的查询词都只出现了一次,所以其对应的值都为1,其他数值假定如下:
      文档集合总数:N=100000
      文档集合中包含词语“男士”的文档个数n男士=1000
      文档集合中包含词语“牛仔裤”的文档个数n牛仔裤=100
      调节因子k1=1.2  k2=200   b=0.75
      假定文档长度是平均文档长度的1.5倍,即k=1.2*(0.25+0.75*1.5)=1.65,将这些数值带入BM25计算公式,可以得出文档D和查询的如下相关性得分:

   

       这样,可对集合中所有的文档都按照上述方法进行计算,将最终的计算分值进行归纳总结,即可准确的预测出与“男士 牛仔裤”这个查询词最相关的宝贝,这些宝贝进行集合分类,最终即可得出该查询词的最优先展示类目!对于在不同区间的分值,淘宝一般会进行分档处理,比如[10,8]区间为第一优先类目,(8,7]区间为第二优先类目,依次进行分档,因此就有可能会出现在同

这篇关于文本相关性PM25算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079569

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Java实现将Markdown转换为纯文本

《Java实现将Markdown转换为纯文本》这篇文章主要为大家详细介绍了两种在Java中实现Markdown转纯文本的主流方法,文中的示例代码讲解详细,大家可以根据需求选择适合的方案... 目录方法一:使用正则表达式(轻量级方案)方法二:使用 Flexmark-Java 库(专业方案)1. 添加依赖(Ma

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep