小说爬虫-01爬取总排行榜 分页翻页 Scrapy SQLite SQL 简单上手!

本文主要是介绍小说爬虫-01爬取总排行榜 分页翻页 Scrapy SQLite SQL 简单上手!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码仓库

代码实现部分很简单!
为了大家方便,代码我已经全部都上传到了 GitHub,希望大家可以点个Start!

https://github.com/turbo-duck/biquge_fiction_spider

请添加图片描述

背景信息

我们计划对笔趣阁网站的小说进行爬取。我们通过小说的排行榜对整个网站的所有小说进行爬取。

https://www.xbiqugew.com/top/allvisit/

对其翻页进行分析

https://www.xbiqugew.com/top/allvisit/2.html

可以看到,构造URL的方式就是:1.html,2.html等等···
同时该网站是没有防护的(请注意!出于学习的目的,你应该合理控制请求的速度,不要给人家网站打挂了!!!
请添加图片描述

使用技术

  • Scrapy 对数据进行爬取
  • SQLite

由于数据量并没有非常大, 所以使用了Python就可以直接使用的SQLite。
对于Scrapy的指令,这里简单一放,详细的大家可以系统学习一下!

https://scrapy.org/
scrapy startproject spider
...
scrapu genspider spider spider.com

编写代码

spider.py

爬虫的主逻辑

import scrapy
import re
import time
from biquge_top_spider.items import BiqugeTopSpiderItemclass SpiderSpider(scrapy.Spider):name = "spider"# allowed_domains = ["spider.com"]# start_urls = ["https://spider.com"]def start_requests(self):for page in range(1, 1392):url = f"https://www.xbiqugew.com/top/allvisit/{page}.html"print(f"url: {url}")yield scrapy.Request(url=url,callback=self.parse_list,)def extract_last_number(self, text):# 使用正则表达式查找所有的数字numbers = re.findall(r'.*?/(\d+)/', text)# print(numbers)if numbers:# 返回最后一个数字return str(numbers[-1])else:return ""def parse_list(self, response):data_list = response.xpath(".//div[@class='novelslistss']//li")page_info = response.xpath(".//em[@id='pagestats']/text()").extract_first()for each in data_list:each_type = each.xpath("./span[@class='s1']/text()").extract_first()each_href = each.xpath("./span[@class='s2']/a/@href").extract_first()each_title = each.xpath("./span[@class='s2']/a/text()").extract_first()each_author = each.xpath("./span[@class='s4']/text()").extract_first()each_update_time = each.xpath("./span[@class='s5']/text()").extract_first()each_code = self.extract_last_number(each_href)now_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())item = BiqugeTopSpiderItem()item['each_code'] = str(each_code)item['each_type'] = str(each_type)item['each_href'] = str(each_href)item['each_title'] = str(each_title)item['each_author'] = str(each_author)item['each_update_time'] = str(each_update_time)item['page_info'] = str(page_info)item['now_time'] = str(now_time)print(f"each_code: {each_code}")yield item

Piplines.py

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
import sqlite3# useful for handling different item types with a single interface
from itemadapter import ItemAdapterclass BiqugeTopSpiderPipeline:def process_item(self, item, spider):return itemclass SQLitePipeline:def __init__(self):self.cursor = Noneself.connection = Nonedef open_spider(self, spider):self.connection = sqlite3.connect('biquge.db')self.cursor = self.connection.cursor()def close_spider(self, spider):self.connection.close()def process_item(self, item, spider):sql = '''INSERT INTO biquge_list (each_code, each_type, each_href, each_title, each_author, each_update_time, page_info, now_time)VALUES (?, ?, ?, ?, ?, ?, ?, ?)'''self.cursor.execute(sql, (item.get('each_code'),item.get('each_type'),item.get('each_href'),item.get('each_title'),item.get('each_author'),item.get('each_update_time'),item.get('page_info'),item.get('now_time')))self.connection.commit()return item

Settings.py

# Scrapy settings for biquge_top_spider project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.htmlBOT_NAME = "biquge_top_spider"SPIDER_MODULES = ["biquge_top_spider.spiders"]
NEWSPIDER_MODULE = "biquge_top_spider.spiders"
LOG_LEVEL = "ERROR"# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = "biquge_top_spider (+http://www.yourdomain.com)"# Obey robots.txt rules
ROBOTSTXT_OBEY = False# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
DOWNLOAD_DELAY = 0.2
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16# Disable cookies (enabled by default)
#COOKIES_ENABLED = False# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8","Accept-Language": "en","User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36"
}# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    "biquge_top_spider.middlewares.BiqugeTopSpiderSpiderMiddleware": 543,
#}# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    "biquge_top_spider.middlewares.BiqugeTopSpiderDownloaderMiddleware": 543,
#}# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    "scrapy.extensions.telnet.TelnetConsole": None,
#}# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {# "biquge_top_spider.pipelines.BiqugeTopSpiderPipeline": 300,"biquge_top_spider.pipelines.SQLitePipeline": 300,
}# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = "httpcache"
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = "scrapy.extensions.httpcache.FilesystemCacheStorage"# Set settings whose default value is deprecated to a future-proof value
REQUEST_FINGERPRINTER_IMPLEMENTATION = "2.7"
TWISTED_REACTOR = "twisted.internet.asyncioreactor.AsyncioSelectorReactor"
FEED_EXPORT_ENCODING = "utf-8"

其他部分

其他部分按默认的来就行,不用修改了。

数据库表

建立了一个简单的表。

CREATE TABLE biquge_list (id INTEGER PRIMARY KEY AUTOINCREMENT,each_code TEXT,each_type TEXT,each_href TEXT,each_title TEXT,each_author TEXT,each_update_time TEXT,page_info TEXT,now_time TEXT
);

测试效果

scrapy crawl spider

经过一段时间的运行之后,可以查看数据库的内容。发现数据已经来了。
请添加图片描述

后续安排

我们已经拿到了每个小说的链接: each_href ,后续我们把这个URL存入到MQ中,对小说的详细内容进行爬取(小说介绍、章节列表)。

这篇关于小说爬虫-01爬取总排行榜 分页翻页 Scrapy SQLite SQL 简单上手!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079121

相关文章

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq