Matlab数学建模实战应用:案例2 - 传染病传播

2024-06-20 19:36

本文主要是介绍Matlab数学建模实战应用:案例2 - 传染病传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、问题分析

二、模型建立

三、Matlab代码实现

四、模型验证

灵敏度分析

五、模型应用

实例总结

总结


前言

传染病传播模型是公共卫生和流行病学的重要研究内容,通过数学建模可以帮助我们理解传染病的传播规律和趋势,以便制定有效的防控策略。本文将详细介绍一个传染病传播案例,包括问题分析、模型建立、Matlab代码实现、模型验证和模型应用。

一、问题分析

  1. 传染病传播途径

    • 传染病通过直接接触、空气传播、飞沫传播等途径在人群中传播。
  2. 影响因素

    • 传染率(β):指每个传染者在单位时间内使易感者受感染的平均次数。
    • 治愈率(γ):指每个感染者在单位时间内恢复或死亡的概率。
    • 人口结构、社会活动、卫生条件等也对传播过程有影响。
  3. 预测目标

    • 建立数学模型,模拟传染病在特定人群中的传播过程,预测未来感染者和恢复者人数。

二、模型建立

以下表格总结了SIR和SEIR模型的基本特点:

模型类型组分主要参数微分方程
SIR模型易感者 (S)传染率 (β), 治愈率 (γ)
 
SEIR模型易感者 (S), 潜伏期 (E)传染率 (β), 治愈率 (γ),潜伏期转化率 (σ)

 

三、Matlab代码实现

以下是使用Matlab模拟SIR和SEIR模型的完整代码示例。

  1. SIR模型

1.1 定义和初始化参数:

% SIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
N = 1000;     % 总人口
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - I0 - R0; % 初始易感者% 定义微分方程
sir_model = @(t, y) [-beta * y(1) * y(2) / N; beta * y(1) * y(2) / N - gamma * y(2); gamma * y(2)
];% 初始条件
y0 = [S0, I0, R0];% 求解微分方程
[t, y] = ode45(sir_model, [0, 160], y0);% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'r', 'LineWidth', 2);
plot(t, y(:,3), 'g', 'LineWidth', 2);
legend('Susceptible', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SIR Model');
grid on;
  1. SEIR模型

2.1 定义和初始化参数:

% SEIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
sigma = 0.2;  % 潜伏期转化率
N = 1000;     % 总人口
E0 = 0;       % 初始潜伏者
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - E0 - I0 - R0; % 初始易感者% 定义微分方程
seir_model = @(t, y) [-beta * y(1) * y(3) / N;beta * y(1) * y(3) / N - sigma * y(2);sigma * y(2) - gamma * y(3);gamma * y(3)
];% 初始条件
y0 = [S0, E0, I0, R0];% 求解微分方程
[t, y] = ode45(seir_model, [0, 160], y0);% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'm', 'LineWidth', 2);
plot(t, y(:,3), 'r', 'LineWidth', 2);
plot(t, y(:,4), 'g', 'LineWidth', 2);
legend('Susceptible', 'Exposed', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SEIR Model');
grid on;

四、模型验证

我们可以通过以下几方面验证模型的合理性:

  1. 使用实际数据验证模型
    • 收集实际疾病传播数据,将其与模型预测结果进行比较,计算均方误差(MSE)和平均绝对误差(MAE)等指标。

    % 假设有一个实际数据集 actual_data[actual_time, actual_infected] = load('actual_data.mat');% 插值实际数据,使其与模型时间点对齐actual_infected_interp = interp1(actual_time, actual_infected, t);% 计算误差MAE = mean(abs(actual_infected_interp - y(:,2)));MSE = mean((actual_infected_interp - y(:,2)).^2);disp(['Mean Absolute Error: ', num2str(MAE)]);disp(['Mean Squared Error: ', num2str(MSE)]);
灵敏度分析

灵敏度分析涉及对模型的主要参数进行调整,并观察这些变化对模型结果的影响。以下是对传染率(β)和治愈率(γ)进行灵敏度分析的实现示例。

  1. 分析传染率(β)的变化

% 修改beta参数
beta_values = [0.2, 0.3, 0.4];
figure;
for i = 1:length(beta_values)beta = beta_values(i);sir_model = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];[t, y] = ode45(sir_model, [0, 160], y0);plot(t, y(:,2), 'LineWidth', 2);hold on;
end
legend('β=0.2', 'β=0.3', 'β=0.4', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Infection Rate (β)');
grid on;

  1. 分析治愈率(γ)的变化

% 修改gamma参数
gamma_values = [0.05, 0.1, 0.15];
figure;
for i = 1:length(gamma_values)gamma = gamma_values(i);sir_model = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];[t, y] = ode45(sir_model, [0, 160], y0);plot(t, y(:,2), 'LineWidth', 2);hold on;
end
legend('γ=0.05', 'γ=0.1', 'γ=0.15', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Recovery Rate (γ)');
grid on;

通过灵敏度分析,我们可以发现不同的传染率和治愈率对感染者人数和传播曲线的影响。这有助于决策者理解在不同条件下疫情的可能发展趋势,并采取更为针对性的干预措施。

五、模型应用

传染病模型不仅能够对疫情发展进行预测,还能够用于疫情防控和政策制定。以下是模型应用的几个方面:

  1. 疫情趋势预测
    • 使用SIR或SEIR模型进行未来的疫情发展预测,帮助公共卫生部门提前做好应对措施。

    % 使用SEIR模型预测未来疫情趋势future_time_span = [0, 300];[t_future, y_future] = ode45(seir_model, future_time_span, y0);% 绘制预测结果figure;plot(t_future, y_future(:,1), 'b', 'LineWidth', 2);hold on;plot(t_future, y_future(:,2), 'm', 'LineWidth', 2);plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);plot(t_future, y_future(:,4), 'g', 'LineWidth', 2);legend('Susceptible', 'Exposed', 'Infected', 'Recovered');xlabel('Time (days)');ylabel('Number of People');title('SEIR Model - Long Term Prediction');grid on;

  1. 政策效果评估
    • 模型可以用于评估不同防控措施的效果,例如隔离政策、疫苗接种等,通过模拟不同措施下的疫情发展,找到最优方案。

    % 模拟隔离措施的效果(降低传染率)beta_quarantine = 0.1;  % 采取隔离措施后的传染率seir_model_quarantine = @(t, y) [-beta_quarantine * y(1) * y(3) / N;beta_quarantine * y(1) * y(3) / N - sigma * y(2);sigma * y(2) - gamma * y(3);gamma * y(3)];[t_quarantine, y_quarantine] = ode45(seir_model_quarantine, future_time_span, y0);% 绘制对比图figure;plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);  % 无隔离的感染者曲线hold on;plot(t_quarantine, y_quarantine(:,3), 'b', 'LineWidth', 2);  % 隔离的感染者曲线legend('No Quarantine', 'With Quarantine');xlabel('Time (days)');ylabel('Number of Infected People');title('Impact of Quarantine on Infection Spread');grid on;

  1. 医疗资源配置
    • 根据预测结果,合理配置医疗资源,如病床、医护人员、药品等,以应对疫情高峰期的需求。

    % 预测未来某一时期的重症患者人数(假设 10% 的感染者会成为重症)severe_case_ratio = 0.1;predicted_severe_cases = y_future(:,3) * severe_case_ratio;% 绘制重症患者人数预测图figure;plot(t_future, predicted_severe_cases, 'r', 'LineWidth', 2);xlabel('Time (days)');ylabel('Number of Severe Cases');title('Prediction of Severe Cases');grid on;

实例总结

通过上述步骤和实例,我们展示了如何使用SIR和SEIR模型模拟传染病传播的全过程,包括模型建立、灵敏度分析、模型验证和应用。以下是该实例总结:

步骤说明示例代码
问题分析分析传染病的传播途径及影响因素-
模型建立建立SIR和SEIR模型sir_model = @(t, y) ...
数据导入定义模型参数和初始条件beta = 0.3; gamma = 0.1; N = 1000;
模型训练使用微分方程求解器求解模型[t, y] = ode45(sir_model, [0, 160], y0);
模型验证使用实际数据验证模型,进行灵敏度分析actual_databeta_valuesgamma_values
模型应用预测疫情趋势,评估防控政策效果,合理配置医疗资源future_time_spanbeta_quarantine

总结

本文详细介绍了如何使用Matlab进行传染病传播建模,包括SIR和SEIR模型的建立、代码实现、灵敏度分析和模型验证。通过实际案例,我们展示了如何将传染病模型应用于疫情预测、政策效果评估和医疗资源配置等方面。

这篇关于Matlab数学建模实战应用:案例2 - 传染病传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079059

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex