Matlab数学建模实战应用:案例2 - 传染病传播

2024-06-20 19:36

本文主要是介绍Matlab数学建模实战应用:案例2 - 传染病传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、问题分析

二、模型建立

三、Matlab代码实现

四、模型验证

灵敏度分析

五、模型应用

实例总结

总结


前言

传染病传播模型是公共卫生和流行病学的重要研究内容,通过数学建模可以帮助我们理解传染病的传播规律和趋势,以便制定有效的防控策略。本文将详细介绍一个传染病传播案例,包括问题分析、模型建立、Matlab代码实现、模型验证和模型应用。

一、问题分析

  1. 传染病传播途径

    • 传染病通过直接接触、空气传播、飞沫传播等途径在人群中传播。
  2. 影响因素

    • 传染率(β):指每个传染者在单位时间内使易感者受感染的平均次数。
    • 治愈率(γ):指每个感染者在单位时间内恢复或死亡的概率。
    • 人口结构、社会活动、卫生条件等也对传播过程有影响。
  3. 预测目标

    • 建立数学模型,模拟传染病在特定人群中的传播过程,预测未来感染者和恢复者人数。

二、模型建立

以下表格总结了SIR和SEIR模型的基本特点:

模型类型组分主要参数微分方程
SIR模型易感者 (S)传染率 (β), 治愈率 (γ)
 
SEIR模型易感者 (S), 潜伏期 (E)传染率 (β), 治愈率 (γ),潜伏期转化率 (σ)

 

三、Matlab代码实现

以下是使用Matlab模拟SIR和SEIR模型的完整代码示例。

  1. SIR模型

1.1 定义和初始化参数:

% SIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
N = 1000;     % 总人口
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - I0 - R0; % 初始易感者% 定义微分方程
sir_model = @(t, y) [-beta * y(1) * y(2) / N; beta * y(1) * y(2) / N - gamma * y(2); gamma * y(2)
];% 初始条件
y0 = [S0, I0, R0];% 求解微分方程
[t, y] = ode45(sir_model, [0, 160], y0);% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'r', 'LineWidth', 2);
plot(t, y(:,3), 'g', 'LineWidth', 2);
legend('Susceptible', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SIR Model');
grid on;
  1. SEIR模型

2.1 定义和初始化参数:

% SEIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
sigma = 0.2;  % 潜伏期转化率
N = 1000;     % 总人口
E0 = 0;       % 初始潜伏者
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - E0 - I0 - R0; % 初始易感者% 定义微分方程
seir_model = @(t, y) [-beta * y(1) * y(3) / N;beta * y(1) * y(3) / N - sigma * y(2);sigma * y(2) - gamma * y(3);gamma * y(3)
];% 初始条件
y0 = [S0, E0, I0, R0];% 求解微分方程
[t, y] = ode45(seir_model, [0, 160], y0);% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'm', 'LineWidth', 2);
plot(t, y(:,3), 'r', 'LineWidth', 2);
plot(t, y(:,4), 'g', 'LineWidth', 2);
legend('Susceptible', 'Exposed', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SEIR Model');
grid on;

四、模型验证

我们可以通过以下几方面验证模型的合理性:

  1. 使用实际数据验证模型
    • 收集实际疾病传播数据,将其与模型预测结果进行比较,计算均方误差(MSE)和平均绝对误差(MAE)等指标。

    % 假设有一个实际数据集 actual_data[actual_time, actual_infected] = load('actual_data.mat');% 插值实际数据,使其与模型时间点对齐actual_infected_interp = interp1(actual_time, actual_infected, t);% 计算误差MAE = mean(abs(actual_infected_interp - y(:,2)));MSE = mean((actual_infected_interp - y(:,2)).^2);disp(['Mean Absolute Error: ', num2str(MAE)]);disp(['Mean Squared Error: ', num2str(MSE)]);
灵敏度分析

灵敏度分析涉及对模型的主要参数进行调整,并观察这些变化对模型结果的影响。以下是对传染率(β)和治愈率(γ)进行灵敏度分析的实现示例。

  1. 分析传染率(β)的变化

% 修改beta参数
beta_values = [0.2, 0.3, 0.4];
figure;
for i = 1:length(beta_values)beta = beta_values(i);sir_model = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];[t, y] = ode45(sir_model, [0, 160], y0);plot(t, y(:,2), 'LineWidth', 2);hold on;
end
legend('β=0.2', 'β=0.3', 'β=0.4', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Infection Rate (β)');
grid on;

  1. 分析治愈率(γ)的变化

% 修改gamma参数
gamma_values = [0.05, 0.1, 0.15];
figure;
for i = 1:length(gamma_values)gamma = gamma_values(i);sir_model = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];[t, y] = ode45(sir_model, [0, 160], y0);plot(t, y(:,2), 'LineWidth', 2);hold on;
end
legend('γ=0.05', 'γ=0.1', 'γ=0.15', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Recovery Rate (γ)');
grid on;

通过灵敏度分析,我们可以发现不同的传染率和治愈率对感染者人数和传播曲线的影响。这有助于决策者理解在不同条件下疫情的可能发展趋势,并采取更为针对性的干预措施。

五、模型应用

传染病模型不仅能够对疫情发展进行预测,还能够用于疫情防控和政策制定。以下是模型应用的几个方面:

  1. 疫情趋势预测
    • 使用SIR或SEIR模型进行未来的疫情发展预测,帮助公共卫生部门提前做好应对措施。

    % 使用SEIR模型预测未来疫情趋势future_time_span = [0, 300];[t_future, y_future] = ode45(seir_model, future_time_span, y0);% 绘制预测结果figure;plot(t_future, y_future(:,1), 'b', 'LineWidth', 2);hold on;plot(t_future, y_future(:,2), 'm', 'LineWidth', 2);plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);plot(t_future, y_future(:,4), 'g', 'LineWidth', 2);legend('Susceptible', 'Exposed', 'Infected', 'Recovered');xlabel('Time (days)');ylabel('Number of People');title('SEIR Model - Long Term Prediction');grid on;

  1. 政策效果评估
    • 模型可以用于评估不同防控措施的效果,例如隔离政策、疫苗接种等,通过模拟不同措施下的疫情发展,找到最优方案。

    % 模拟隔离措施的效果(降低传染率)beta_quarantine = 0.1;  % 采取隔离措施后的传染率seir_model_quarantine = @(t, y) [-beta_quarantine * y(1) * y(3) / N;beta_quarantine * y(1) * y(3) / N - sigma * y(2);sigma * y(2) - gamma * y(3);gamma * y(3)];[t_quarantine, y_quarantine] = ode45(seir_model_quarantine, future_time_span, y0);% 绘制对比图figure;plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);  % 无隔离的感染者曲线hold on;plot(t_quarantine, y_quarantine(:,3), 'b', 'LineWidth', 2);  % 隔离的感染者曲线legend('No Quarantine', 'With Quarantine');xlabel('Time (days)');ylabel('Number of Infected People');title('Impact of Quarantine on Infection Spread');grid on;

  1. 医疗资源配置
    • 根据预测结果,合理配置医疗资源,如病床、医护人员、药品等,以应对疫情高峰期的需求。

    % 预测未来某一时期的重症患者人数(假设 10% 的感染者会成为重症)severe_case_ratio = 0.1;predicted_severe_cases = y_future(:,3) * severe_case_ratio;% 绘制重症患者人数预测图figure;plot(t_future, predicted_severe_cases, 'r', 'LineWidth', 2);xlabel('Time (days)');ylabel('Number of Severe Cases');title('Prediction of Severe Cases');grid on;

实例总结

通过上述步骤和实例,我们展示了如何使用SIR和SEIR模型模拟传染病传播的全过程,包括模型建立、灵敏度分析、模型验证和应用。以下是该实例总结:

步骤说明示例代码
问题分析分析传染病的传播途径及影响因素-
模型建立建立SIR和SEIR模型sir_model = @(t, y) ...
数据导入定义模型参数和初始条件beta = 0.3; gamma = 0.1; N = 1000;
模型训练使用微分方程求解器求解模型[t, y] = ode45(sir_model, [0, 160], y0);
模型验证使用实际数据验证模型,进行灵敏度分析actual_databeta_valuesgamma_values
模型应用预测疫情趋势,评估防控政策效果,合理配置医疗资源future_time_spanbeta_quarantine

总结

本文详细介绍了如何使用Matlab进行传染病传播建模,包括SIR和SEIR模型的建立、代码实现、灵敏度分析和模型验证。通过实际案例,我们展示了如何将传染病模型应用于疫情预测、政策效果评估和医疗资源配置等方面。

这篇关于Matlab数学建模实战应用:案例2 - 传染病传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079059

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取