嵌入式开发十九:SysTick—系统定时器

2024-06-20 14:28

本文主要是介绍嵌入式开发十九:SysTick—系统定时器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

         在前面实验中我们使用到的延时都是通过SysTick进行延时的。 我们知道,延时有两种方式:软件延时,即CPU 循环等待产生的,这个延时是不精确的。第二种就是滴答定时器延时,本篇博客就来介绍 STM32F4 内部 SysTick 系统定时器,通过一个简单的 LED 流水灯程序来讲述如何配置 SysTick 系统定时器实现精确延时。学习可以参考《STM32F3 与 F4 系列 Cortex M4 内核编程手册》 4.5 SysTick timer (STK) 章节或者参考库函数中 core_cm4.h 文件 。

目录

一、SysTick 定时器介绍

二、SysTick 定时器操作

2.1 SysTick 定时器寄存器

2.1.1 控制和状态寄存器:CTRL

2.1.2  重装载寄存器:LOAD

2.1.3 当前数值寄存器:VAL

2.1.4  校准数值寄存器:CALIB 

2.2 系统节拍定时器的工作原理

2.3 SysTick 定时器操作步骤

2.4  使用SysTick 定时器实现精准延时

2.4.1 实现1微秒延时

2.4.2 实现1毫秒延时

2.4.3 实现1秒延时

三、SysTick 定时实验

一、SysTick 定时器介绍

       SysTick 定时器也叫 SysTick 滴答定时器,它是 Cortex-M4 内核的一个外设, 被嵌入在 NVIC 中,用来产生SYSTICK异常(异常号:15)。它是一个 24 位向下递减的定时器,每计数一次所需时间为 1/SYSTICK,SYSTICK 是系统定时器时钟,它可以直接取自系统时钟,还可以通过系统时钟 8 分频后获取,本套程序中我们采用后者,即每计数一次所需时间为 1/(168/8)us,换句话说在 1us 的时间内会计数 21 次。当定时器计数到 0 时,将 从 LOAD 寄存器中自动重装定时器初值,重新向下递减计数,如此循环往复。如果开启 SysTick 中断的话,当定时器计数到 0,将产生一个中断信号。如下图所示,因此只要知道计数的次数就可以准确得到它的延时时间。 因为 SysTick 是属于 CM4 内核的外设,所以所有基于 CM4 内核的单片机都具有这个系统定时器,使得软件在 CM4 单片机中可以很容易的移植。系统定时器一般用于操作系统, 用于产生时基,维持操作系统的心跳。

如何计算延时时间?

       如果时钟源选择8分频后的即21MHZ,那么,1秒钟就会计数21000000次,(计数一次的时间就是:1/21000000),如此:如果想要定时1毫秒,就要计数21000次,定时1微秒,就要计数21次!

二、SysTick 定时器操作

        在 STM32F4 库函数中,并没有提供相应的 SysTick 定时器配置函数,我们要操作 SysTick 定时器就需要了解它的寄存器功能。其实 SysTick 定时器寄存器很 简单,只有 4 个,分别是 CTRL、LOAD、VAL、CALIB,在使用 SysTick 产生定时的时候, 只需要配置前三个寄存器,最后一个校准寄存器不需要使用。对应如下图所示:

2.1 SysTick 定时器寄存器

2.1.1 控制和状态寄存器:CTRL

CTRL 是 SysTick 定时器的控制及状态寄存器。其相应位功能如下:

注:CLKSOUTCE 位是用于选择 SysTick 定时器时钟来源:

  1. 如果该位为 1,表示其时钟是由系统时钟直接提供即 168M。
  2. 如果该位为 0,表示其时钟是由系统时钟八分频后提供即 168/8=21M。

2.1.2  重装载寄存器:LOAD

LOAD 是 SysTick 定时器的重装载数值寄存器。其相应位功能如下:

因为 STM32F4 的 SysTick 定时器是一个 24 位递减计数器,因此重装载寄存器中只使用到了低 24 位,即 bit0-bit23。当系统复位时,其值为 0。

2.1.3 当前数值寄存器:VAL

VAL 是 SysTick 定时器的当前数值寄存器。其相应位功能如下:

同样只有 bit0-bit24 有效,复位时值为 0。

2.1.4  校准数值寄存器:CALIB 

CALIB 是 SysTick 定时器的校准数值寄存器。其相应位功能如下:

此寄存器在定时实验中不需要使用,可以不用了解。

2.2 系统节拍定时器的工作原理

        当系统节拍定时器⼯作时,该定时器⾸先会从寄存器LOAD存储的值开始递减计数。当递减为0 后,寄存器CTRL的COUNTFLAG状态位会置1,同时会重装载寄存器LOAD预置的值。 当计数到0时,通过设置寄存器CTRL的TICKINT的值来产⽣异常(中断),或是⽆动作。

2.3 SysTick 定时器操作步骤

SysTick 定时器的操作可以分为 4 步:

  1. 设置 SysTick 定时器的时钟源。
  2. 设置 SysTick 定时器的重装初始值(如果要使用中断的话,就将中断使能打开)。
  3. 清零 SysTick 定时器当前计数器的值。
  4. 打开 SysTick 定时器。

2.4  使用SysTick 定时器实现精准延时

2.4.1 实现1微秒延时

void Sleep_us(uint32_t us)
{while(us--){SysTick ->CTRL = (1 << 0);   //定时器使能第0位置1SysTick ->CTRL &= ~(1<<2);   //选择时钟源:第2位置0,选择外部时钟源,由系统时钟八分频后提供即 168/8=21MSysTick ->CTRL &= ~(1<<1);   //延时时间到无动作:第1位置0SysTick ->VAL = 0x0;        //当前数值寄存器初值赋0SysTick ->LOAD = 21;       //重装载数值寄存器的值,定时1微秒,所以是21while(!(SysTick ->CTRL & (1<<16)));  //死循环等待计数值减到0SysTick ->CTRL = ~(1<<0);    //关闭定时器,第0位置0}}//复用上述函数实现延时1秒
void Sleep_s(uint32_t s)
{while(s--){Sleep_ms(1000);}
}

2.4.2 实现1毫秒延时

void Sleep_ms(uint32_t ms)
{while(ms--){SysTick ->CTRL = (1 << 0);   //定时器使能第0位置1SysTick ->CTRL &= ~(1<<2);   //选择时钟源:第2位置0,选择外部时钟源,由系统时钟八分频后提供即 168/8=21MSysTick ->CTRL &= ~(1<<1);   //延时时间到无动作:第1位置0SysTick ->VAL = 0x0;        //当前数值寄存器初值赋0SysTick ->LOAD = 21000;       //重装载数值寄存器的值,定时1毫秒,所以是21000while(!(SysTick ->CTRL & (1<<16)));  //死循环等待计数值减到0SysTick ->CTRL = ~(1<<0);    //关闭定时器,第0位置0}}

2.4.3 实现1秒延时

void Sleep_s(uint32_t s)
{while(s--){SysTick ->CTRL = (1 << 0);   //定时器使能第0位置1SysTick ->CTRL &= ~(1<<2);   //选择时钟源:第2位置0,选择外部时钟源,由系统时钟八分频后提供即 168/8=21MSysTick ->CTRL &= ~(1<<1);   //延时时间到无动作:第1位置0SysTick ->VAL = 0x0;        //当前数值寄存器初值赋0SysTick ->LOAD = 21000000;       //重装载数值寄存器的值,定时1秒,所以是21000000while(!(SysTick ->CTRL & (1<<16)));  //死循环等待计数值减到0SysTick ->CTRL = ~(1<<0);    //关闭定时器,第0位置0}}

1秒=1000毫秒=1000微秒。

三、SysTick 定时实验

利用 SysTick 产生 1s 的时基,LED 以 1s 的频率闪烁。

led.h文件

#ifndef __MYLED_H
#define __MYLED_Hvoid LED_Init(void);#endif

led.c 文件

#include "stm32f4xx.h"                  // Device header
#include "myled.h"/*开时钟  打开外设对应的时钟(查看参考手册,该外设挂在哪个数据总线上),对应GPIO在哪条总线开哪条GPIOF外设 挂在AHB1总线上,所以要打开AHB1的时钟,双击函数,右键->go to definition*/void LED_Init(void)
{//第一步:使能GPIOF的时钟 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);//使能 GPIOF 时钟//第二步:GPIOF9,F10 初始化设置GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;//LED0 和 LED1 对应 IO 口GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHzGPIO_Init(GPIOF, &GPIO_InitStructure);//初始化 GPIO//第三步:设置灯的初始状态GPIO_SetBits(GPIOF,GPIO_Pin_9 | GPIO_Pin_10);//GPIOF9,F10 设置高电平,灯灭
}

mydelay.h

#ifndef __MYLED_H
#define __MYLED_Hvoid LED_Init(void);#endif

mydelay.c

#include "stm32f4xx.h"                  // Device header
#include "mydelay.h"void My_Delay_us(uint32_t num)
{while(num--){SysTick ->CTRL = (1 << 0);SysTick ->CTRL &= ~(1<<2);SysTick ->CTRL &= ~(1<<1);SysTick ->VAL = 0x0;SysTick ->LOAD = 21;while(!(SysTick ->CTRL & (1<<16)));SysTick ->CTRL = ~(1<<0);}
}void My_Delay_ms(uint32_t num)
{while(num--){My_Delay_us(1000);}
}void My_Delay_s(uint32_t num)
{while(num--){My_Delay_ms(1000);}
}

main.c文件

#include "stm32f4xx.h"                  // Device header
#include "stdio.h"
#include "mydelay.h"
#include "myled.h"int main(void)
{LED_Init();while(1){My_Delay_ms(1000);           //延时1秒GPIO_ToggleBits(GPIOF,GPIO_Pin_9 | GPIO_Pin_10);}
}

实验现象:

     两个灯每隔一秒闪烁一次。

至此,我们的本次的学习就结束了。通过以上几个实验,相信对串口通信有了深入的理解,这一节我们就讲解到这里,希望能对大家的开发有帮助。 如有兴趣,感谢点赞、关注、收藏,若有不正地方,还请各位大佬多多指教!

这篇关于嵌入式开发十九:SysTick—系统定时器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078388

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、