如何理解快速排序的时间复杂度是O(nlogn)

2024-06-20 10:08

本文主要是介绍如何理解快速排序的时间复杂度是O(nlogn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

选择排序、冒泡排序等算法的时间复杂度都比较好理解,但不是很清楚快速排序的时间复杂度为什么是O(nlogn)。从《算法图解》中看到的思路,很赞,解决了一直以来的疑惑。

引用自《算法图解》:

快速排序的情况比较棘手,在最糟情况下,其运行时间为O(n2)。。在平均情况下,快速排序的运行时间为O(nlogn)。

1、平均情况与最糟情况

快速排序的性能高度依赖于你选择的基准值。

  • 最糟情况
    假设你总是将第一个元素用作基准值,且要处理的数组是有序的。由于快速排序算法不检查输入数组是否有序,因此它依然尝试对其进行排序。注意,数组并没有被分成两半,相反,其中一个子数组始终为空,这导致调用栈非常长在这里插入图片描述
  • 平均情况
    假设你总是将中间的元素用作基准值,在这种情况下,调用栈如下。 调用栈短得多!因为你每次都将数组分成两半,所以不需要那么多递归调用。你很快就到达 了基线条件,因此调用栈短得多。
    在这里插入图片描述
    第一个示例展示的是最糟情况,而第二个示例展示的是最佳情况。在最糟情况下,栈长为 O(n),而在最佳情况下,栈长为O(log n)。

现在来看看栈的第一层。你将一个元素用作基准值,并将其他的元素划分到两个子数组中。 这涉及数组中的全部8个元素,因此该操作的时间为O(n)。在调用栈的第一层,涉及全部8个元素, 但实际上,在调用栈的每层都涉及O(n)个元素。
在这里插入图片描述
即便以不同的方式划分数组,每次也将涉及O(n)个元素。
在这里插入图片描述
在这个示例中,调用栈的高度为O(log n),而每层需要的时间为O(n)。因此整个算法需要的时间为O(n) * O(log n) = O(n log n)。这就是最佳情况。 在最糟情况下,有O(n)层,因此该算法的运行时间为O(n) * O(n) = O(n2)。

2、归并排序和快速排序的时间复杂度都是 O(nlogn),为什么说快速排序一般优于归并排序?

首先搬运stackOverflow的回答:Why is mergesort better for linked lists?

One of the main sources of efficiency in quicksort is locality of reference, where the computer hardware is optimized so that accessing memory locations that are near one another tends to be faster than accessing memory locations scattered throughout memory. The partitioning step in quicksort typically has excellent locality, since it accesses consecutive array elements near the front and the back. As a result, quicksort tends to perform much better than other sorting algorithms like heapsort even though it often does roughly the same number of comparisons and swaps, since in the case of heapsort the accesses are more scattered.
Additionally, quicksort is typically much faster than other sorting algorithms because it operates in-place, without needing to create any auxiliary arrays to hold temporary values. Compared to something like merge sort, this can be a huge advantage because the time required to allocate and deallocate the auxiliary arrays can be noticeable. Operating in-place also improves quicksort’s locality.
When working with linked lists, neither of these advantages necessarily applies. Because linked list cells are often scattered throughout memory, there is no locality bonus to accessing adjacent linked list cells. Consequently, one of quicksort’s huge performance advantages is eaten up. Similarly, the benefits of working in-place no longer apply, since merge sort’s linked list algorithm doesn’t need any extra auxiliary storage space.
That said, quicksort is still very fast on linked lists. Merge sort just tends to be faster because it more evenly splits the lists in half and does less work per iteration to do a merge than to do the partitioning step.

翻译一下:
快速排序中效率的主要来源之一是引用位置,在引用位置中,计算机硬件经过优化,因此访问彼此相邻的内存位置往往比访问分散在整个内存中的内存位置更快。quicksort中的分区步骤通常具有很好的局部性,因为它访问前面和后面附近的连续数组元素。因此,快速排序往往比其他排序算法(如heapsort)执行得更好,尽管它通常执行大致相同数量的比较和交换,因为在heapsort的情况下,访问更加分散。

此外,quicksort通常比其他排序算法快得多,因为它在原地运行,而不需要创建任何辅助数组来保存临时值。与merge sort相比,这是一个巨大的优势,因为分配和释放辅助数组所需的时间是显而易见的。就地操作也提高了quicksort的位置。

使用链表时,这两个优点都不一定适用。由于链表单元通常分散在整个内存中,因此访问相邻的链表单元没有额外的局部性好处。因此,quicksort的一个巨大的性能优势被消耗殆尽。类似地,就地工作的好处不再适用,因为merge sort的链表算法不需要任何额外的辅助存储空间。

也就是说,快速排序在链接列表中仍然非常快。合并排序往往更快,因为它更均匀地将列表分成两半,并且每次执行合并所做的工作比执行分区步骤所做的工作更少。

这篇关于如何理解快速排序的时间复杂度是O(nlogn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077828

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c