如何理解快速排序的时间复杂度是O(nlogn)

2024-06-20 10:08

本文主要是介绍如何理解快速排序的时间复杂度是O(nlogn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

选择排序、冒泡排序等算法的时间复杂度都比较好理解,但不是很清楚快速排序的时间复杂度为什么是O(nlogn)。从《算法图解》中看到的思路,很赞,解决了一直以来的疑惑。

引用自《算法图解》:

快速排序的情况比较棘手,在最糟情况下,其运行时间为O(n2)。。在平均情况下,快速排序的运行时间为O(nlogn)。

1、平均情况与最糟情况

快速排序的性能高度依赖于你选择的基准值。

  • 最糟情况
    假设你总是将第一个元素用作基准值,且要处理的数组是有序的。由于快速排序算法不检查输入数组是否有序,因此它依然尝试对其进行排序。注意,数组并没有被分成两半,相反,其中一个子数组始终为空,这导致调用栈非常长在这里插入图片描述
  • 平均情况
    假设你总是将中间的元素用作基准值,在这种情况下,调用栈如下。 调用栈短得多!因为你每次都将数组分成两半,所以不需要那么多递归调用。你很快就到达 了基线条件,因此调用栈短得多。
    在这里插入图片描述
    第一个示例展示的是最糟情况,而第二个示例展示的是最佳情况。在最糟情况下,栈长为 O(n),而在最佳情况下,栈长为O(log n)。

现在来看看栈的第一层。你将一个元素用作基准值,并将其他的元素划分到两个子数组中。 这涉及数组中的全部8个元素,因此该操作的时间为O(n)。在调用栈的第一层,涉及全部8个元素, 但实际上,在调用栈的每层都涉及O(n)个元素。
在这里插入图片描述
即便以不同的方式划分数组,每次也将涉及O(n)个元素。
在这里插入图片描述
在这个示例中,调用栈的高度为O(log n),而每层需要的时间为O(n)。因此整个算法需要的时间为O(n) * O(log n) = O(n log n)。这就是最佳情况。 在最糟情况下,有O(n)层,因此该算法的运行时间为O(n) * O(n) = O(n2)。

2、归并排序和快速排序的时间复杂度都是 O(nlogn),为什么说快速排序一般优于归并排序?

首先搬运stackOverflow的回答:Why is mergesort better for linked lists?

One of the main sources of efficiency in quicksort is locality of reference, where the computer hardware is optimized so that accessing memory locations that are near one another tends to be faster than accessing memory locations scattered throughout memory. The partitioning step in quicksort typically has excellent locality, since it accesses consecutive array elements near the front and the back. As a result, quicksort tends to perform much better than other sorting algorithms like heapsort even though it often does roughly the same number of comparisons and swaps, since in the case of heapsort the accesses are more scattered.
Additionally, quicksort is typically much faster than other sorting algorithms because it operates in-place, without needing to create any auxiliary arrays to hold temporary values. Compared to something like merge sort, this can be a huge advantage because the time required to allocate and deallocate the auxiliary arrays can be noticeable. Operating in-place also improves quicksort’s locality.
When working with linked lists, neither of these advantages necessarily applies. Because linked list cells are often scattered throughout memory, there is no locality bonus to accessing adjacent linked list cells. Consequently, one of quicksort’s huge performance advantages is eaten up. Similarly, the benefits of working in-place no longer apply, since merge sort’s linked list algorithm doesn’t need any extra auxiliary storage space.
That said, quicksort is still very fast on linked lists. Merge sort just tends to be faster because it more evenly splits the lists in half and does less work per iteration to do a merge than to do the partitioning step.

翻译一下:
快速排序中效率的主要来源之一是引用位置,在引用位置中,计算机硬件经过优化,因此访问彼此相邻的内存位置往往比访问分散在整个内存中的内存位置更快。quicksort中的分区步骤通常具有很好的局部性,因为它访问前面和后面附近的连续数组元素。因此,快速排序往往比其他排序算法(如heapsort)执行得更好,尽管它通常执行大致相同数量的比较和交换,因为在heapsort的情况下,访问更加分散。

此外,quicksort通常比其他排序算法快得多,因为它在原地运行,而不需要创建任何辅助数组来保存临时值。与merge sort相比,这是一个巨大的优势,因为分配和释放辅助数组所需的时间是显而易见的。就地操作也提高了quicksort的位置。

使用链表时,这两个优点都不一定适用。由于链表单元通常分散在整个内存中,因此访问相邻的链表单元没有额外的局部性好处。因此,quicksort的一个巨大的性能优势被消耗殆尽。类似地,就地工作的好处不再适用,因为merge sort的链表算法不需要任何额外的辅助存储空间。

也就是说,快速排序在链接列表中仍然非常快。合并排序往往更快,因为它更均匀地将列表分成两半,并且每次执行合并所做的工作比执行分区步骤所做的工作更少。

这篇关于如何理解快速排序的时间复杂度是O(nlogn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077828

相关文章

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2