71. UE5 RPG 实现敌人召唤技能

2024-06-20 00:20

本文主要是介绍71. UE5 RPG 实现敌人召唤技能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这一篇文章中,我们要实现敌人的召唤师能够召唤自己的仆从进行作战。
要实现这个技能,我们首先创建新的敌人蓝图,用于召唤。接着,我们将实现一个召唤技能基类,在基类中实现在召唤师的周围获取到可以生成的位置点,然后在技能蓝图中在对应的位置生成敌人的Actor,并在后续对其进行优化。接下来,我们将一步步实现此功能。

创建新的敌人

我们首先创建两个新的敌人,这两个恶魔类型的敌人,用于召唤使用。
这里也不仔细讲解如何创建,我们在64. UE5 RPG 创建新的双手攻击怪物中也专门讲解了如何创建一个新的敌人,这里只说一下项目源码的改动。
在这里插入图片描述
由于黑色的恶魔是远程释放火球的,但是它没有武器,我们之前释放火球的都是带有武器的角色(萨满,玩家英雄)为了兼容没有武器的角色,我们又增加了一个可以通过骨骼标签和骨骼名称去获取位置的。
在这里插入图片描述

在角色基类里面实现它

FVector ARPGCharacter::GetCombatSocketLocationByTag_Implementation(const FGameplayTag SocketTag, const FName SocketName) const
{if(SocketTag.MatchesTagExact(FRPGGameplayTags::Get().CombatSocket_Weapon)){return Weapon->GetSocketLocation(SocketName);}return GetMesh()->GetSocketLocation(SocketName);
}

然后将生成投掷物的技能接口修改掉
在这里插入图片描述
在敌人的技能里,蓝图修改
在这里插入图片描述
在玩家英雄技能里,修改蓝图
在这里插入图片描述

生成位置点

我们要实现召唤技能,首先创建一个新的召唤技能基类,由于它不是一个攻击性的技能,也不会造成伤害,所以,我们基于技能基类创建即可
在这里插入图片描述
创建一个名为RPGSummonAbility的召唤技能
在这里插入图片描述
在.h文件中,我们需要添加一个获取随机位置的函数,并添加一些可以自定义的配置项

UCLASS()
class AURA_API URPGSummonAbility : public URPGGameplayAbility
{GENERATED_BODY()public:UFUNCTION(BlueprintCallable)TArray<FVector> GetSpawnLocations();UPROPERTY(EditDefaultsOnly, Category="Summoning")int32 NumMinions = 5; // 召唤的数量UPROPERTY(EditDefaultsOnly, Category="Summoning")TArray<TSubclassOf<APawn>> MinionClasses; //召唤生成的角色类UPROPERTY(EditDefaultsOnly, Category="Summoning")float MinSpawnDistance = 50.f; //召唤物距离召唤师最近的距离UPROPERTY(EditDefaultsOnly, Category="Summoning")float MaxSpawnDistance = 250.f; //召唤物距离召唤师最远的距离UPROPERTY(EditDefaultsOnly, Category="Summoning")float SpawnSpread = 90.f; //召唤物在召唤师前面的角度范围
};

在cpp中,我们实现此函数,我们想让召唤物生成在召唤师的前面角度范围内,需要获取到召唤师的位置和朝向。然后,将角度范围的值进行分段

	const FVector Forward = GetAvatarActorFromActorInfo()->GetActorForwardVector(); //获取召唤师的朝向const FVector Location = GetAvatarActorFromActorInfo()->GetActorLocation(); //获取召唤师的位置const float DeltaSpread = SpawnSpread / NumMinions; //将召唤的角度范围进行分段,在每段里面生成一个召唤物

然后,我们再获取到角色的最左和最右的生成角度,通过debug调试一下,查看获取到的角度是否正确

	const FVector LeftOfSpread = Forward.RotateAngleAxis(-SpawnSpread / 2.f, FVector::UpVector); //获取到最左侧的角度UKismetSystemLibrary::DrawDebugArrow(GetAvatarActorFromActorInfo(), Location, Location + LeftOfSpread * MaxSpawnDistance, 4.f, FLinearColor::Red, 3.f);const FVector RightOfSpread = Forward.RotateAngleAxis(SpawnSpread / 2.f, FVector::UpVector); //获取到最右侧的角度UKismetSystemLibrary::DrawDebugArrow(GetAvatarActorFromActorInfo(), Location, Location + RightOfSpread * MaxSpawnDistance, 4.f, FLinearColor::Red, 3.f);

我们创建了一个技能类,写了一些代码,接下来,去UE里面测试一下,功能是否有效。
打开UE创建一个蓝图,基于我们创建的召唤技能类
在这里插入图片描述
右侧设置一下技能标签,用于技能激活
在这里插入图片描述
蓝图这里直接连一下,调用函数
在这里插入图片描述
在数据配置里面将技能给对应的角色设置
在这里插入图片描述
将敌人放到场景测试,查看是否能够成功绘制出debug线
在这里插入图片描述
接下来,查看我们是否能够获取到准确的位置,我们绘制调试球体

	DrawDebugSphere(GetWorld(), Location + LeftOfSpread * MinSpawnDistance, 15.f,12,FColor::Blue,false, 3.f);DrawDebugSphere(GetWorld(), Location + LeftOfSpread * MaxSpawnDistance, 15.f,12,FColor::Blue,false, 3.f);DrawDebugSphere(GetWorld(), Location + RightOfSpread * MinSpawnDistance, 15.f,12,FColor::Blue,false, 3.f);DrawDebugSphere(GetWorld(), Location + RightOfSpread * MaxSpawnDistance, 15.f,12,FColor::Blue,false, 3.f);

然后打印查看
在这里插入图片描述
接下来,我们想根据生成的个数,平均角度,然后在每个角度上面,从最远和最近的距离随机一个位置来生成角色。这里如果需要5个位置,我们其实分为四段就可以,大家可以画图测试一下。

	const FVector Forward = GetAvatarActorFromActorInfo()->GetActorForwardVector(); //获取召唤师的朝向const FVector Location = GetAvatarActorFromActorInfo()->GetActorLocation(); //获取召唤师的位置const float DeltaSpread = SpawnSpread / (NumMinions - 1.f); //将召唤的角度范围进行分段,在每段里面生成一个召唤物const FVector LeftOfSpread = Forward.RotateAngleAxis(-SpawnSpread / 2.f, FVector::UpVector); //获取到最左侧的角度TArray<FVector> SpawnLocations;for(int32 i = 0; i < NumMinions; i++) //遍历,在每个分段上面获取位置{const FVector Direction = LeftOfSpread.RotateAngleAxis(DeltaSpread * i, FVector::UpVector); //获取当前分段的角度FVector ChosenSpawnLocation = Location + Direction * FMath::FRandRange(MinSpawnDistance, MaxSpawnDistance); //随机位置,加上原始位置就是偏移的位置DrawDebugSphere(GetWorld(), ChosenSpawnLocation, 15.f,12,FColor::Green,false, 3.f);SpawnLocations.Add(ChosenSpawnLocation);}

接着编译去测试代码,查看效果
在这里插入图片描述
接下来,我们添加上射线拾取,防止生成的角色悬空出现。

TArray<FVector> URPGSummonAbility::GetSpawnLocations()
{const FVector Forward = GetAvatarActorFromActorInfo()->GetActorForwardVector(); //获取召唤师的朝向const FVector Location = GetAvatarActorFromActorInfo()->GetActorLocation(); //获取召唤师的位置const float DeltaSpread = SpawnSpread / (NumMinions - 1.f); //将召唤的角度范围进行分段,在每段里面生成一个召唤物const FVector LeftOfSpread = Forward.RotateAngleAxis(-SpawnSpread / 2.f, FVector::UpVector); //获取到最左侧的角度TArray<FVector> SpawnLocations;for(int32 i = 0; i < NumMinions; i++) //遍历,在每个分段上面获取位置{const FVector Direction = LeftOfSpread.RotateAngleAxis(DeltaSpread * i, FVector::UpVector); //获取当前分段的角度FVector ChosenSpawnLocation = Location + Direction * FMath::FRandRange(MinSpawnDistance, MaxSpawnDistance); //随机位置,加上原始位置就是偏移的位置FHitResult Hit;GetWorld()->LineTraceSingleByChannel(Hit, ChosenSpawnLocation + FVector(0.f, 0.f, 400.f), ChosenSpawnLocation - FVector(0.f, 0.f, 400.f), ECC_Visibility);if(Hit.bBlockingHit){ChosenSpawnLocation = Hit.ImpactPoint;}DrawDebugSphere(GetWorld(), ChosenSpawnLocation, 15.f,12,FColor::Green,false, 3.f);SpawnLocations.Add(ChosenSpawnLocation);}const FVector RightOfSpread = Forward.RotateAngleAxis(SpawnSpread / 2.f, FVector::UpVector); //获取到最右侧的角度UKismetSystemLibrary::DrawDebugArrow(GetAvatarActorFromActorInfo(), Location, Location + LeftOfSpread * MaxSpawnDistance, 4.f, FLinearColor::Red, 3.f);UKismetSystemLibrary::DrawDebugArrow(GetAvatarActorFromActorInfo(), Location, Location + RightOfSpread * MaxSpawnDistance, 4.f, FLinearColor::Black, 3.f);DrawDebugSphere(GetWorld(), Location + LeftOfSpread * MinSpawnDistance, 15.f,12,FColor::Blue,false, 3.f);DrawDebugSphere(GetWorld(), Location + LeftOfSpread * MaxSpawnDistance, 15.f,12,FColor::Blue,false, 3.f);DrawDebugSphere(GetWorld(), Location + RightOfSpread * MinSpawnDistance, 15.f,12,FColor::Blue,false, 3.f);DrawDebugSphere(GetWorld(), Location + RightOfSpread * MaxSpawnDistance, 15.f,12,FColor::Blue,false, 3.f);return SpawnLocations;
}

在这里插入图片描述

实现技能蓝图

在技能蓝图里面,我们获取到了召唤生成的位置,后续我们要根据位置生成Actor,所以,我们将生成的位置保存下来,后续使用,并且不想一次性全部生成,一次性生成最大的问题是在一帧内创建多个资源会造成卡顿。
我们将生成的点保存为变量,并生成一个下标索引
在这里插入图片描述
接下来就是实现在位置生成测试盒子,查看在蓝图实现生成,这里在每个生成以后,延迟一秒继续生成。
在这里插入图片描述
查看效果
在这里插入图片描述
当然,我们还可以将数组内的位置点排序打乱,这样,生成时,不会只按一个方向生成
在这里插入图片描述
接下来,我们继续优化,在生成Actor之前,先在生成位置创建一个粒子特效,表现出后续会出现生成的物体。我们这里使用一个序列,遍历位置数组,在地面生成粒子特效
在这里插入图片描述
效果如下
在这里插入图片描述

生成召唤物

接下来,我们修改debug内容,将生成的调试盒子修改成真正需要生成的内容。
首先,将需要生成的内容,添加到配置项中
在这里插入图片描述
由于可以添加多个类,我们需要从其中随机一个类使用,在c++中添加一个新的函数,这个可以不需要引脚

	UFUNCTION(BlueprintPure, Category="Summoning")TSubclassOf<APawn> GetRandomMinionClass(); //获取随机的召唤物类

在实现这里,随机一个下标即可

TSubclassOf<APawn> URPGSummonAbility::GetRandomMinionClass()
{const int32 Selection = FMath::RandRange(0, MinionClasses.Num() - 1);return MinionClasses[Selection];
}

编译,我们打开去修改蓝图,通过节点spawn Actor from Class来生成实例,由于位置处于地面,我们生成的角色都会半身陷入到地面里,这里对z轴进行一个偏移,
在这里插入图片描述
发现生成是成功了,但是都不会动
在这里插入图片描述
我们再给它增加一个节点,生成一个默认的控制器,并控制目标
在这里插入图片描述
这样,我们就实现了召唤物的生成。

添加蒙太奇动画

实现召唤技能最后一步工作还需要制作,就是召唤师还没有设置动画。
创建一个蒙太奇
在这里插入图片描述
我们在蓝图中,设置了技能的相关设置
在这里插入图片描述
但是,召唤技能不需要设置这些内容,这里设置的是角色攻击的,我们将召唤的写死在技能里,在蒙太奇里面添加一个动画通知
在这里插入图片描述
在执行召唤之前,添加蒙太奇播放
在这里插入图片描述
为了防止出现滑步的现象,我们需要对召唤动画开启根运动,这样,蒙太奇播放时,会根据动画内的位移修改,召唤的动画没有位移,所以会固定在当前位置
在这里插入图片描述
接着我们在播放蒙太奇后,监听游戏事件,在监听到游戏事件后,会触发后续生成事件
在这里插入图片描述
这里需要注意的是,如果游戏结束,但是后面生成没有完成,也会被终止掉,所以,我们触发事件到蒙太奇动画播放完成,需要留有足够生成召唤物的时间。
接下来,就是查看是否能够成功播放蒙太奇和生成召唤物
在这里插入图片描述
没有问题本章内容完成,后面一章,我们将实现如何限制召唤物的召唤数量,并优化一些内容。
最后附上技能的蓝图节点全身照
在这里插入图片描述

这篇关于71. UE5 RPG 实现敌人召唤技能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076572

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

利用Frp实现内网穿透(docker实现)

文章目录 1、WSL子系统配置2、腾讯云服务器安装frps2.1、创建配置文件2.2 、创建frps容器 3、WSL2子系统Centos服务器安装frpc服务3.1、安装docker3.2、创建配置文件3.3 、创建frpc容器 4、WSL2子系统Centos服务器安装nginx服务 环境配置:一台公网服务器(腾讯云)、一台笔记本电脑、WSL子系统涉及知识:docker、Frp

基于 Java 实现的智能客服聊天工具模拟场景

服务端代码 import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;import java.io.PrintWriter;import java.net.ServerSocket;import java.net.Socket;public class Serv