Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度

本文主要是介绍Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第十四天,(ง •_•)ง💪💪,编程语言:C++

目录

226.翻转二叉树

101.对称二叉树

100.相同的树 

572.另一个树的子树

104.二叉树的最大深度

559.n叉树的最大深度

111.二叉树的最小深度

总结


226.翻转二叉树

文档讲解:代码随想录翻转二叉树

视频讲解:手撕翻转二叉树

题目:

初看:本题翻转二叉树不仅仅是把根节点的左右子树进行了翻转,也把子节点下面的左右子树都进行了翻转。需要对所有中间节点(非叶子节点)进行处理。

代码:前序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:void reverseNode(TreeNode* root) {if (root == nullptr || (root->left == nullptr && root->right == nullptr)) return;TreeNode* tmp = root->left; //中root->left = root->right;root->right = tmp;//swap(root->left, root->right);reverseNode(root->left); //左reverseNode(root->right);//右}TreeNode* invertTree(TreeNode* root) { reverseNode(root);return root;}
};

代码: 层次遍历(广度优先遍历)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:TreeNode* invertTree(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);while (!que.empty()) {int size = que.size();for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();swap(node->left, node->right); // 节点处理if (node->left) que.push(node->left);if (node->right) que.push(node->right);}}return root;}
};

注意:此题能够使用前序遍历和后序遍历,逻辑基本一致,但如果采用中序遍历的方式,要注意把中节点处理后,右子树就变成了左子树,左子树就变成了右子树,因此下次处理的时候仍应处理的是左子树(原右子树)

class Solution {
public:TreeNode* invertTree(TreeNode* root) {if (root == NULL) return root;invertTree(root->left);         // 左swap(root->left, root->right);  // 中invertTree(root->left);         // 注意 这里依然要遍历左孩子,因为中间节点已经翻转了return root;}
};

101.对称二叉树

文档讲解:代码随想录对称二叉树

视频讲解:手撕对称二叉树

题目:

初看:对称二叉树从根节点开始,往下比较左右节点,之后往下需要分为两条道路,一条左右子树的外层节点,一条比较左右子树的内层节点。因此实际上是比较左右两棵树是否相等。

代码:后序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:bool compare(TreeNode* left, TreeNode* right) {if(left == NULL && right == NULL) return true; //都为空返回trueelse if(left == NULL || right == NULL) return false; //有一个为空另一个不为空(都为空前面判断了)返回falseelse if(left->val != right->val) return false; //都不为空但是值不相等else { //都不为空且值相等,向下继续遍历bool outside = compare(left->left, right->right); //外侧比较bool inside = compare(left->right, right->left); //内测比较return outside && inside; //都为true才返回true;}}//递归法bool isSymmetric(TreeNode* root) {if(root == nullptr) return true;return compare(root->left, root->right);}
};

学习:

  1. 本题需要遍历两棵树而且要比较内侧和外侧的节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。这都可以理解为一种后序遍历,把孩子的信息反馈到父节点身上。
  2. 本题的递归三部曲:①确定递归函数的参数和返回值:本题需要比较左右子树,因此参数肯定为左子树和右子树的节点,其次本题是判断正确,因此返回bool类型。②确定终止条件:用清楚节点存在的情况:左节点为空,右节点不为空;左不为空,右为空;左右都为空;左右都不为空,比较节点数值。③确定单层递归逻辑:左右节点都不为空,且数值相同时才进入单层递归的逻辑。单层递归的逻辑就是比较:比较二叉树外侧是否对称,传入的是左节点的左孩子,右节点的右孩子;比较内侧是否对称,传入左节点的右孩子,右节点的左孩子;如果左右都对称就返回true ,有一侧不对称就返回false。

代码:迭代法,注意加入节点的顺序即可

class Solution {
public://迭代法bool isSymmetric(TreeNode* root) {queue<TreeNode*> que;if(root == nullptr) return true;que.push(root->left);que.push(root->right);while(!que.empty()) {TreeNode* left = que.front();que.pop();TreeNode* right = que.front();que.pop();if(left == NULL && right == NULL) continue; //都为空进行后序节点比较else if(left == NULL || right == NULL) return false; //有一个为空另一个不为空(都为空前面判断了)返回falseelse if(left->val != right->val) return false; //都不为空但是值不相等else {//按顺序加入节点que.push(left->left);   // 加入左节点左孩子que.push(right->right); // 加入右节点右孩子que.push(left->right);  // 加入左节点右孩子que.push(right->left);  // 加入右节点左孩子}}return true;}
};

注意:迭代法中使用了队列,但实际上并不是层序遍历,而是仅仅通过一个容器来成对的存放我们要比较的元素,知道这一本质之后就发现,用队列,用栈,甚至用数组,都是可以的。

其他题目:

100.相同的树 

题目:

初看:和左右子树对称一样,只不过没有了 根节点,比较的节点也变为了一一对应的关系。

代码:

//时间复杂度O(min(m,n))
//空间复杂度O(min(m,n))
class Solution {
public:bool isSameTree(TreeNode* p, TreeNode* q) {queue<TreeNode*> que;if (!p && !q) return true;//载入两个节点依次进行判断que.push(p);que.push(q);while(!que.empty()) {//取出需要比较的节点TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();if (node1 == nullptr && node2 == nullptr) continue; //都为空进行下一轮判断else if (node1 == nullptr || node2 == nullptr) return false; //有一个不为空,返回错误else if (node1->val != node2->val) return false; //都不为空但是值不等else {//注意载入节点的顺序que.push(node1->left);que.push(node2->left);que.push(node1->right);que.push(node2->right);}}return true;}
};

572.另一个树的子树

题目:

初看: 本题事实上与找到相同的树是一样的,只不过它还需要遍历每一个节点。

代码:

//时间复杂度O(n*m)
class Solution {
public://暴力匹配==寻找相同的树bool compare(TreeNode* root, TreeNode* subRoot) {queue<TreeNode*> que;//载入两个节点依次进行判断que.push(root);que.push(subRoot);while(!que.empty()) {//取出需要比较的节点TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();if (node1 == nullptr && node2 == nullptr) continue; //都为空进行下一轮判断else if (node1 == nullptr || node2 == nullptr) return false; //有一个不为空,返回错误else if (node1->val != node2->val) return false; //都不为空但是值不等else {//注意载入节点的顺序que.push(node1->left);que.push(node2->left);que.push(node1->right);que.push(node2->right);}}return true;}bool isSubtree(TreeNode* root, TreeNode* subRoot) {//广度优先遍历+暴力匹配//广度优先遍历queue<TreeNode*> que;if (root != nullptr) que.push(root);if (subRoot == nullptr) return true;bool result;while (!que.empty()) {TreeNode* node = que.front(); que.pop();if (node->val == subRoot->val) {result = compare(node, subRoot);cout << result << endl;if(result == true) return true;}if(node->left) que.push(node->left);if(node->right) que.push(node->right);}return false;}
};

注意:本题还可以采用KMP算法,和哈希筛选等方法,但过于复杂不利于理解,故没有给出。可前往力扣查看对应例题详解。


104.二叉树的最大深度

文本讲解: 代码随想录二叉树的最大深度

视频讲解:手撕二叉树的最大深度

题目:

学习:昨天使用了层次遍历的方式求解本题,实际上本题也可以使用深度优先遍历的方式来进行求解。本题是要查找树的最大深度,实际上这与树的高度是一一对应的,根节点的高度就是树的最大深度,因此可以采取前序遍历和后序遍历的方式,来查找根节点的高度。

代码:后序遍历(递归法)

注:相当于每次递归后depth深度+1,之后返回左子树和右子树之中最大的那个深度。

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int getdepth(TreeNode* node) {if (node == NULL) return 0;int leftdepth = getdepth(node->left);       // 左int rightdepth = getdepth(node->right);     // 右int depth = 1 + max(leftdepth, rightdepth); // 中return depth;}int maxDepth(TreeNode* root) {return getdepth(root);}
};

代码:前序遍历(递归法)

注:前序遍历相比之下复杂一些,这是因为它需要先处理节点,再进行递归,因此需要一个辅助量result,每次递归前进行赋值判断。实际含义就是先找寻左子树中最大深度,保存最大深度,然后看右子树有没有更大的深度,再进行赋值。

class Solution {
public:int result;void getdepth(TreeNode* node, int depth) {result = depth > result ? depth : result; // 中if (node->left == NULL && node->right == NULL) return ;if (node->left) { // 左depth++;    // 深度+1getdepth(node->left, depth);depth--;    // 回溯,深度-1}if (node->right) { // 右depth++;    // 深度+1getdepth(node->right, depth);depth--;    // 回溯,深度-1}return ;}int maxDepth(TreeNode* root) {result = 0;if (root == NULL) return result;getdepth(root, 1);return result;}
};

其他题目:

559.n叉树的最大深度

题目:

学习:本题和求二叉树的最大深度逻辑基本相同,只不过是把左右孩子换成了一个数组,增加一个for循环遍历孩子即可。

代码:层次遍历

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int maxDepth(Node* root) {//最大深度就是需要遍历的层数queue<Node*> que;int depth = 0; //记入深度if (root != nullptr) que.push(root);while (!que.empty()) {int size = que.size();//每进行循环深度加1depth++;for (int i = 0; i < size; i++) {Node* node = que.front();que.pop();for (auto it = node->children.begin(); it != node->children.end(); it++) {que.push(*it);}}}return depth;}
};

代码:后序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int maxDepth(Node* root) {if (root == 0) return 0;int depth = 0;//求孩子的最大深度for (int i = 0; i < root->children.size(); i++) {depth = max (depth, maxDepth(root->children[i]));}//加上根节点return depth + 1;}
};

111.二叉树的最小深度

文档讲解:代码随想录二叉树的最小深度

视频讲解:手撕二叉树的最小深度

题目:

学习: 昨天同样也是用了层次遍历的方法求解本题,本题也能够使用迭代法进行处理,但需要注意的是,只有遍历到叶子节点(左右节点都没有时)才算是遍历到了合法的深度位置。

代码:后序遍历(递归)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int getDepth(TreeNode* node) {if (node == NULL) return 0;int leftDepth = getDepth(node->left);           // 左int rightDepth = getDepth(node->right);         // 右// 中//只有遍历到一个树的叶子节点(没有孩子)才算是终止// 当一个左子树为空,右不为空,这时并不是最低点,它可能还有孩子if (node->left == NULL && node->right != NULL) { return 1 + rightDepth;}   // 当一个右子树为空,左不为空,这时并不是最低点,它可能还有孩子if (node->left != NULL && node->right == NULL) { return 1 + leftDepth;}//两边都有孩子才取最小的深度int result = 1 + min(leftDepth, rightDepth);return result;}int minDepth(TreeNode* root) {return getDepth(root);}
};

代码:层次遍历

class Solution {
public:int minDepth(TreeNode* root) {//最小深度,就是在遍历每一层节点的时候,如果发现该节点没有子节点则停下循环。queue<TreeNode*> que;int depth = 0; //记入深度if (root != nullptr) que.push(root);while (!que.empty()) {int size = que.size();//每进行循环深度加1depth++;for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();if (node->left) que.push(node->left);if (node->right) que.push(node->right);if (node->right == nullptr && node->left == nullptr) {return depth;}}}return depth;}
};

总结

二叉树遍历有两种方式:广度优先遍历,深度优先遍历。深度优先遍历又分为三种:前序遍历、后序遍历、中序遍历。广度优先遍历就是层次遍历。

二叉树遍历的代码有三种:递归法求前中后序遍历,迭代法使用栈求前中后序遍历,迭代法使用队列求层次遍历。

这篇关于Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076179

相关文章

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回