Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度

本文主要是介绍Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第十四天,(ง •_•)ง💪💪,编程语言:C++

目录

226.翻转二叉树

101.对称二叉树

100.相同的树 

572.另一个树的子树

104.二叉树的最大深度

559.n叉树的最大深度

111.二叉树的最小深度

总结


226.翻转二叉树

文档讲解:代码随想录翻转二叉树

视频讲解:手撕翻转二叉树

题目:

初看:本题翻转二叉树不仅仅是把根节点的左右子树进行了翻转,也把子节点下面的左右子树都进行了翻转。需要对所有中间节点(非叶子节点)进行处理。

代码:前序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:void reverseNode(TreeNode* root) {if (root == nullptr || (root->left == nullptr && root->right == nullptr)) return;TreeNode* tmp = root->left; //中root->left = root->right;root->right = tmp;//swap(root->left, root->right);reverseNode(root->left); //左reverseNode(root->right);//右}TreeNode* invertTree(TreeNode* root) { reverseNode(root);return root;}
};

代码: 层次遍历(广度优先遍历)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:TreeNode* invertTree(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);while (!que.empty()) {int size = que.size();for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();swap(node->left, node->right); // 节点处理if (node->left) que.push(node->left);if (node->right) que.push(node->right);}}return root;}
};

注意:此题能够使用前序遍历和后序遍历,逻辑基本一致,但如果采用中序遍历的方式,要注意把中节点处理后,右子树就变成了左子树,左子树就变成了右子树,因此下次处理的时候仍应处理的是左子树(原右子树)

class Solution {
public:TreeNode* invertTree(TreeNode* root) {if (root == NULL) return root;invertTree(root->left);         // 左swap(root->left, root->right);  // 中invertTree(root->left);         // 注意 这里依然要遍历左孩子,因为中间节点已经翻转了return root;}
};

101.对称二叉树

文档讲解:代码随想录对称二叉树

视频讲解:手撕对称二叉树

题目:

初看:对称二叉树从根节点开始,往下比较左右节点,之后往下需要分为两条道路,一条左右子树的外层节点,一条比较左右子树的内层节点。因此实际上是比较左右两棵树是否相等。

代码:后序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:bool compare(TreeNode* left, TreeNode* right) {if(left == NULL && right == NULL) return true; //都为空返回trueelse if(left == NULL || right == NULL) return false; //有一个为空另一个不为空(都为空前面判断了)返回falseelse if(left->val != right->val) return false; //都不为空但是值不相等else { //都不为空且值相等,向下继续遍历bool outside = compare(left->left, right->right); //外侧比较bool inside = compare(left->right, right->left); //内测比较return outside && inside; //都为true才返回true;}}//递归法bool isSymmetric(TreeNode* root) {if(root == nullptr) return true;return compare(root->left, root->right);}
};

学习:

  1. 本题需要遍历两棵树而且要比较内侧和外侧的节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。这都可以理解为一种后序遍历,把孩子的信息反馈到父节点身上。
  2. 本题的递归三部曲:①确定递归函数的参数和返回值:本题需要比较左右子树,因此参数肯定为左子树和右子树的节点,其次本题是判断正确,因此返回bool类型。②确定终止条件:用清楚节点存在的情况:左节点为空,右节点不为空;左不为空,右为空;左右都为空;左右都不为空,比较节点数值。③确定单层递归逻辑:左右节点都不为空,且数值相同时才进入单层递归的逻辑。单层递归的逻辑就是比较:比较二叉树外侧是否对称,传入的是左节点的左孩子,右节点的右孩子;比较内侧是否对称,传入左节点的右孩子,右节点的左孩子;如果左右都对称就返回true ,有一侧不对称就返回false。

代码:迭代法,注意加入节点的顺序即可

class Solution {
public://迭代法bool isSymmetric(TreeNode* root) {queue<TreeNode*> que;if(root == nullptr) return true;que.push(root->left);que.push(root->right);while(!que.empty()) {TreeNode* left = que.front();que.pop();TreeNode* right = que.front();que.pop();if(left == NULL && right == NULL) continue; //都为空进行后序节点比较else if(left == NULL || right == NULL) return false; //有一个为空另一个不为空(都为空前面判断了)返回falseelse if(left->val != right->val) return false; //都不为空但是值不相等else {//按顺序加入节点que.push(left->left);   // 加入左节点左孩子que.push(right->right); // 加入右节点右孩子que.push(left->right);  // 加入左节点右孩子que.push(right->left);  // 加入右节点左孩子}}return true;}
};

注意:迭代法中使用了队列,但实际上并不是层序遍历,而是仅仅通过一个容器来成对的存放我们要比较的元素,知道这一本质之后就发现,用队列,用栈,甚至用数组,都是可以的。

其他题目:

100.相同的树 

题目:

初看:和左右子树对称一样,只不过没有了 根节点,比较的节点也变为了一一对应的关系。

代码:

//时间复杂度O(min(m,n))
//空间复杂度O(min(m,n))
class Solution {
public:bool isSameTree(TreeNode* p, TreeNode* q) {queue<TreeNode*> que;if (!p && !q) return true;//载入两个节点依次进行判断que.push(p);que.push(q);while(!que.empty()) {//取出需要比较的节点TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();if (node1 == nullptr && node2 == nullptr) continue; //都为空进行下一轮判断else if (node1 == nullptr || node2 == nullptr) return false; //有一个不为空,返回错误else if (node1->val != node2->val) return false; //都不为空但是值不等else {//注意载入节点的顺序que.push(node1->left);que.push(node2->left);que.push(node1->right);que.push(node2->right);}}return true;}
};

572.另一个树的子树

题目:

初看: 本题事实上与找到相同的树是一样的,只不过它还需要遍历每一个节点。

代码:

//时间复杂度O(n*m)
class Solution {
public://暴力匹配==寻找相同的树bool compare(TreeNode* root, TreeNode* subRoot) {queue<TreeNode*> que;//载入两个节点依次进行判断que.push(root);que.push(subRoot);while(!que.empty()) {//取出需要比较的节点TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();if (node1 == nullptr && node2 == nullptr) continue; //都为空进行下一轮判断else if (node1 == nullptr || node2 == nullptr) return false; //有一个不为空,返回错误else if (node1->val != node2->val) return false; //都不为空但是值不等else {//注意载入节点的顺序que.push(node1->left);que.push(node2->left);que.push(node1->right);que.push(node2->right);}}return true;}bool isSubtree(TreeNode* root, TreeNode* subRoot) {//广度优先遍历+暴力匹配//广度优先遍历queue<TreeNode*> que;if (root != nullptr) que.push(root);if (subRoot == nullptr) return true;bool result;while (!que.empty()) {TreeNode* node = que.front(); que.pop();if (node->val == subRoot->val) {result = compare(node, subRoot);cout << result << endl;if(result == true) return true;}if(node->left) que.push(node->left);if(node->right) que.push(node->right);}return false;}
};

注意:本题还可以采用KMP算法,和哈希筛选等方法,但过于复杂不利于理解,故没有给出。可前往力扣查看对应例题详解。


104.二叉树的最大深度

文本讲解: 代码随想录二叉树的最大深度

视频讲解:手撕二叉树的最大深度

题目:

学习:昨天使用了层次遍历的方式求解本题,实际上本题也可以使用深度优先遍历的方式来进行求解。本题是要查找树的最大深度,实际上这与树的高度是一一对应的,根节点的高度就是树的最大深度,因此可以采取前序遍历和后序遍历的方式,来查找根节点的高度。

代码:后序遍历(递归法)

注:相当于每次递归后depth深度+1,之后返回左子树和右子树之中最大的那个深度。

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int getdepth(TreeNode* node) {if (node == NULL) return 0;int leftdepth = getdepth(node->left);       // 左int rightdepth = getdepth(node->right);     // 右int depth = 1 + max(leftdepth, rightdepth); // 中return depth;}int maxDepth(TreeNode* root) {return getdepth(root);}
};

代码:前序遍历(递归法)

注:前序遍历相比之下复杂一些,这是因为它需要先处理节点,再进行递归,因此需要一个辅助量result,每次递归前进行赋值判断。实际含义就是先找寻左子树中最大深度,保存最大深度,然后看右子树有没有更大的深度,再进行赋值。

class Solution {
public:int result;void getdepth(TreeNode* node, int depth) {result = depth > result ? depth : result; // 中if (node->left == NULL && node->right == NULL) return ;if (node->left) { // 左depth++;    // 深度+1getdepth(node->left, depth);depth--;    // 回溯,深度-1}if (node->right) { // 右depth++;    // 深度+1getdepth(node->right, depth);depth--;    // 回溯,深度-1}return ;}int maxDepth(TreeNode* root) {result = 0;if (root == NULL) return result;getdepth(root, 1);return result;}
};

其他题目:

559.n叉树的最大深度

题目:

学习:本题和求二叉树的最大深度逻辑基本相同,只不过是把左右孩子换成了一个数组,增加一个for循环遍历孩子即可。

代码:层次遍历

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int maxDepth(Node* root) {//最大深度就是需要遍历的层数queue<Node*> que;int depth = 0; //记入深度if (root != nullptr) que.push(root);while (!que.empty()) {int size = que.size();//每进行循环深度加1depth++;for (int i = 0; i < size; i++) {Node* node = que.front();que.pop();for (auto it = node->children.begin(); it != node->children.end(); it++) {que.push(*it);}}}return depth;}
};

代码:后序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int maxDepth(Node* root) {if (root == 0) return 0;int depth = 0;//求孩子的最大深度for (int i = 0; i < root->children.size(); i++) {depth = max (depth, maxDepth(root->children[i]));}//加上根节点return depth + 1;}
};

111.二叉树的最小深度

文档讲解:代码随想录二叉树的最小深度

视频讲解:手撕二叉树的最小深度

题目:

学习: 昨天同样也是用了层次遍历的方法求解本题,本题也能够使用迭代法进行处理,但需要注意的是,只有遍历到叶子节点(左右节点都没有时)才算是遍历到了合法的深度位置。

代码:后序遍历(递归)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int getDepth(TreeNode* node) {if (node == NULL) return 0;int leftDepth = getDepth(node->left);           // 左int rightDepth = getDepth(node->right);         // 右// 中//只有遍历到一个树的叶子节点(没有孩子)才算是终止// 当一个左子树为空,右不为空,这时并不是最低点,它可能还有孩子if (node->left == NULL && node->right != NULL) { return 1 + rightDepth;}   // 当一个右子树为空,左不为空,这时并不是最低点,它可能还有孩子if (node->left != NULL && node->right == NULL) { return 1 + leftDepth;}//两边都有孩子才取最小的深度int result = 1 + min(leftDepth, rightDepth);return result;}int minDepth(TreeNode* root) {return getDepth(root);}
};

代码:层次遍历

class Solution {
public:int minDepth(TreeNode* root) {//最小深度,就是在遍历每一层节点的时候,如果发现该节点没有子节点则停下循环。queue<TreeNode*> que;int depth = 0; //记入深度if (root != nullptr) que.push(root);while (!que.empty()) {int size = que.size();//每进行循环深度加1depth++;for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();if (node->left) que.push(node->left);if (node->right) que.push(node->right);if (node->right == nullptr && node->left == nullptr) {return depth;}}}return depth;}
};

总结

二叉树遍历有两种方式:广度优先遍历,深度优先遍历。深度优先遍历又分为三种:前序遍历、后序遍历、中序遍历。广度优先遍历就是层次遍历。

二叉树遍历的代码有三种:递归法求前中后序遍历,迭代法使用栈求前中后序遍历,迭代法使用队列求层次遍历。

这篇关于Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076179

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(