本文主要是介绍opencv图像处理:三、图像阈值处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、简介
这里主要介绍图像简单阈值处理,自适应阈值处理和Qtsu阈值处理。
二、简单阈值图像处理
简单阈值图像处理我们需要使用cv.threshold()函数,该函数第一个参数是图像数据(必须为灰度图),第二个参数为阈值,第三个参数为超过阈值的像素值的最大值,最后一个参数为二值化类型。
各种阈值类型计算原理如下:
以下为示例代码:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/gradient.png', 0)ret, thresh1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
ret, thresh2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV)
ret, thresh3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC)
ret, thresh4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO)
ret, thresh5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV)titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in range(6):plt.subplot(2,3,i+1),plt.imshow(images[i],'gray',vmin=0,vmax=255)plt.title(titles[i])plt.xticks([]),plt.yticks([])plt.show()
三、自适应阈值图像处理
简单阈值图像处理无法很好满足所有场景,比如有一张图片在不同的区域亮度不一样,这种情况自适应阈值图像处理就能更好的满足处理需求。自适应阈值图像处理需要使用cv.adaptiveThreshold()函数,以下为介绍其主要参数。
1、adaptiveMethod 参数决定如何计算阈值
- cv.ADAPTIVE_THRESH_MEAN_C: 阈值是相邻面积的均值减去常数C。
- cv.ADAPTIVE_THRESH_GAUSSIAN_C: 阈值是相邻值减去常数C的高斯加权和。
2、thresholdType参数在第二小节有介绍。
3、blockSize 该值相邻区域大小。
4、C 是一个常数,从邻近像素的平均值或加权和中减去。
以下为代码示例:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/sudoku.png', 0)
img = cv.medianBlur(img, 5)ret,th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
th2 = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 2)
th3 = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 2)
titles = ['Original Image', 'Global Thresholding (v = 127)', 'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]for i in range(4):plt.subplot(2, 2, i + 1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()
四、大津二值化(QTSU)
QTSU是日本学者大津提出的一种二值化处理图像算法,该算法是根据灰度图本身的信息,自动确定最佳阈值,实现以最佳阈值对灰度图进行二值化,一般用于将图片分割前景和背景。
在以下代码示例中,我们以一张带噪点的图片作为输入,以三种处理方式来做比对。第一种处理方式,直接使用全局阈值127来处理。第二种处理方式,我们用QTSU直接对图片进行处理。第三种处理方式,先通过5x5高斯核对图片进行过滤,然后在用QTSU对过滤后的图像进行处理。
以下是代码示例:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/noisy2.png', 0)# global thresholding
ret1,th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
# Otsu's thresholding
ret2,th2 = cv.threshold(img, 0, 255, cv.THRESH_BINARY+cv.THRESH_OTSU)# Otsu's thresholding after Gaussian filtering
blur = cv.GaussianBlur(img, (5,5), 0)
ret3,th3 = cv.threshold(blur, 0, 255, cv.THRESH_BINARY+cv.THRESH_OTSU)# plot all the images and their histograms
images = [img, 0, th1,img, 0, th2,blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)','Original Noisy Image','Histogram',"Otsu's Thresholding",'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]for i in range(3):plt.subplot(3,3,i*3+1), plt.imshow(images[i*3],'gray')plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])plt.subplot(3,3,i*3+2), plt.hist(images[i*3].ravel(),256)plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])plt.subplot(3,3,i*3+3), plt.imshow(images[i*3+2],'gray')plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])plt.show()
这篇关于opencv图像处理:三、图像阈值处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!