opencv图像处理:三、图像阈值处理

2024-06-19 18:08

本文主要是介绍opencv图像处理:三、图像阈值处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介

这里主要介绍图像简单阈值处理,自适应阈值处理和Qtsu阈值处理。

二、简单阈值图像处理

简单阈值图像处理我们需要使用cv.threshold()函数,该函数第一个参数是图像数据(必须为灰度图),第二个参数为阈值,第三个参数为超过阈值的像素值的最大值,最后一个参数为二值化类型。
各种阈值类型计算原理如下:
在这里插入图片描述
以下为示例代码:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/gradient.png', 0)ret, thresh1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
ret, thresh2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV)
ret, thresh3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC)
ret, thresh4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO)
ret, thresh5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV)titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in range(6):plt.subplot(2,3,i+1),plt.imshow(images[i],'gray',vmin=0,vmax=255)plt.title(titles[i])plt.xticks([]),plt.yticks([])plt.show()

在这里插入图片描述

三、自适应阈值图像处理

简单阈值图像处理无法很好满足所有场景,比如有一张图片在不同的区域亮度不一样,这种情况自适应阈值图像处理就能更好的满足处理需求。自适应阈值图像处理需要使用cv.adaptiveThreshold()函数,以下为介绍其主要参数。

1、adaptiveMethod 参数决定如何计算阈值

  • cv.ADAPTIVE_THRESH_MEAN_C: 阈值是相邻面积的均值减去常数C。
  • cv.ADAPTIVE_THRESH_GAUSSIAN_C: 阈值是相邻值减去常数C的高斯加权和。

2、thresholdType参数在第二小节有介绍。
3、blockSize 该值相邻区域大小。
4、C 是一个常数,从邻近像素的平均值或加权和中减去。

以下为代码示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/sudoku.png', 0)
img = cv.medianBlur(img, 5)ret,th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
th2     = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 2)
th3     = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 2)
titles  = ['Original Image', 'Global Thresholding (v = 127)', 'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images  = [img, th1, th2, th3]for i in range(4):plt.subplot(2, 2, i + 1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

四、大津二值化(QTSU)

QTSU是日本学者大津提出的一种二值化处理图像算法,该算法是根据灰度图本身的信息,自动确定最佳阈值,实现以最佳阈值对灰度图进行二值化,一般用于将图片分割前景和背景。

在以下代码示例中,我们以一张带噪点的图片作为输入,以三种处理方式来做比对。第一种处理方式,直接使用全局阈值127来处理。第二种处理方式,我们用QTSU直接对图片进行处理。第三种处理方式,先通过5x5高斯核对图片进行过滤,然后在用QTSU对过滤后的图像进行处理。

以下是代码示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/noisy2.png', 0)# global thresholding
ret1,th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
# Otsu's thresholding
ret2,th2 = cv.threshold(img, 0, 255, cv.THRESH_BINARY+cv.THRESH_OTSU)# Otsu's thresholding after Gaussian filtering
blur = cv.GaussianBlur(img, (5,5), 0)
ret3,th3 = cv.threshold(blur, 0, 255, cv.THRESH_BINARY+cv.THRESH_OTSU)# plot all the images and their histograms
images = [img,  0, th1,img,  0, th2,blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)','Original Noisy Image','Histogram',"Otsu's Thresholding",'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]for i in range(3):plt.subplot(3,3,i*3+1),   plt.imshow(images[i*3],'gray')plt.title(titles[i*3]),   plt.xticks([]), plt.yticks([])plt.subplot(3,3,i*3+2),   plt.hist(images[i*3].ravel(),256)plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])plt.subplot(3,3,i*3+3),   plt.imshow(images[i*3+2],'gray')plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

这篇关于opencv图像处理:三、图像阈值处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075761

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段