一个轻量级的TTS模型实现

2024-06-19 11:28
文章标签 实现 模型 轻量级 tts

本文主要是介绍一个轻量级的TTS模型实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.环境

python 版本 3.9

2.训练数据集

本次采用LJSpeech数据集,百度网盘下载地址 链接:https://pan.baidu.com/s/1DDFmPpHQrTR_NvjAfwX-QA 
提取码:1234

3.安装依赖

pip install TTS

4.工程结构

5代码部分

decoder.py

import torch
from torch import nnfrom TTS.tts.layers.generic.normalization import ActNorm
from TTS.tts.layers.glow_tts.glow import CouplingBlock, InvConvNeardef squeeze(x, x_mask=None, num_sqz=2):"""GlowTTS squeeze operationIncrease number of channels and reduce number of time stepsby the same factor.Note:each 's' is a n-dimensional vector.``[s1,s2,s3,s4,s5,s6] --> [[s1, s3, s5], [s2, s4, s6]]``"""b, c, t = x.size()t = (t // num_sqz) * num_sqzx = x[:, :, :t]x_sqz = x.view(b, c, t // num_sqz, num_sqz)x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * num_sqz, t // num_sqz)if x_mask is not None:x_mask = x_mask[:, :, num_sqz - 1 :: num_sqz]else:x_mask = torch.ones(b, 1, t // num_sqz).to(device=x.device, dtype=x.dtype)return x_sqz * x_mask, x_maskdef unsqueeze(x, x_mask=None, num_sqz=2):"""GlowTTS unsqueeze operation (revert the squeeze)Note:each 's' is a n-dimensional vector.``[[s1, s3, s5], [s2, s4, s6]] --> [[s1, s3, s5, s2, s4, s6]]``"""b, c, t = x.size()x_unsqz = x.view(b, num_sqz, c // num_sqz, t)x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // num_sqz, t * num_sqz)if x_mask is not None:x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, num_sqz).view(b, 1, t * num_sqz)else:x_mask = torch.ones(b, 1, t * num_sqz).to(device=x.device, dtype=x.dtype)return x_unsqz * x_mask, x_maskclass Decoder(nn.Module):"""Stack of Glow Decoder Modules.::Squeeze -> ActNorm -> InvertibleConv1x1 -> AffineCoupling -> UnsqueezeArgs:in_channels (int): channels of input tensor.hidden_channels (int): hidden decoder channels.kernel_size (int): Coupling block kernel size. (Wavenet filter kernel size.)dilation_rate (int): rate to increase dilation by each layer in a decoder block.num_flow_blocks (int): number of decoder blocks.num_coupling_layers (int): number coupling layers. (number of wavenet layers.)dropout_p (float): wavenet dropout rate.sigmoid_scale (bool): enable/disable sigmoid scaling in coupling layer."""def __init__(self,in_channels,hidden_channels,kernel_size,dilation_rate,num_flow_blocks,num_coupling_layers,dropout_p=0.0,num_splits=4,num_squeeze=2,sigmoid_scale=False,c_in_channels=0,):super().__init__()self.in_channels = in_channelsself.hidden_channels = hidden_channelsself.kernel_size = kernel_sizeself.dilation_rate = dilation_rateself.num_flow_blocks = num_flow_blocksself.num_coupling_layers = num_coupling_layersself.dropout_p = dropout_pself.num_splits = num_splitsself.num_squeeze = num_squeezeself.sigmoid_scale = sigmoid_scaleself.c_in_channels = c_in_channelsself.flows = nn.ModuleList()for _ in range(num_flow_blocks):self.flows.append(ActNorm(channels=in_channels * num_squeeze))self.flows.append(InvConvNear(channels=in_channels * num_squeeze, num_splits=num_splits))self.flows.append(CouplingBlock(in_channels * num_squeeze,hidden_channels,kernel_size=kernel_size,dilation_rate=dilation_rate,num_layers=num_coupling_layers,c_in_channels=c_in_channels,dropout_p=dropout_p,sigmoid_scale=sigmoid_scale,))def forward(self, x, x_mask, g=None, reverse=False):"""Shapes:- x:  :math:`[B, C, T]`- x_mask: :math:`[B, 1 ,T]`- g: :math:`[B, C]`"""if not reverse:flows = self.flowslogdet_tot = 0else:flows = reversed(self.flows)logdet_tot = Noneif self.num_squeeze > 1:x, x_mask = squeeze(x, x_mask, self.num_squeeze)for f in flows:if not reverse:x, logdet = f(x, x_mask, g=g, reverse=reverse)logdet_tot += logdetelse:x, logdet = f(x, x_mask, g=g, reverse=reverse)if self.num_squeeze > 1:x, x_mask = unsqueeze(x, x_mask, self.num_squeeze)return x, logdet_totdef store_inverse(self):for f in self.flows:f.store_inverse()

encoder.py

import mathimport torch
from torch import nnfrom TTS.tts.layers.generic.gated_conv import GatedConvBlock
from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock
from TTS.tts.layers.generic.time_depth_sep_conv import TimeDepthSeparableConvBlock
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.layers.glow_tts.glow import ResidualConv1dLayerNormBlock
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
from TTS.tts.utils.helpers import sequence_maskclass Encoder(nn.Module):"""Glow-TTS encoder module.::embedding -> <prenet> -> encoder_module -> <postnet> --> proj_mean||-> proj_var||-> concat -> duration_predictor↑speaker_embedArgs:num_chars (int): number of characters.out_channels (int): number of output channels.hidden_channels (int): encoder's embedding size.hidden_channels_ffn (int): transformer's feed-forward channels.kernel_size (int): kernel size for conv layers and duration predictor.dropout_p (float): dropout rate for any dropout layer.mean_only (bool): if True, output only mean values and use constant std.use_prenet (bool): if True, use pre-convolutional layers before transformer layers.c_in_channels (int): number of channels in conditional input.Shapes:- input: (B, T, C)::suggested encoder params...for encoder_type == 'rel_pos_transformer'encoder_params={'kernel_size':3,'dropout_p': 0.1,'num_layers': 6,'num_heads': 2,'hidden_channels_ffn': 768,  # 4 times the hidden_channels'input_length': None}for encoder_type == 'gated_conv'encoder_params={'kernel_size':5,'dropout_p': 0.1,'num_layers': 9,}for encoder_type == 'residual_conv_bn'encoder_params={"kernel_size": 4,"dilations": [1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1],"num_conv_blocks": 2,"num_res_blocks": 13}for encoder_type == 'time_depth_separable'encoder_params={"kernel_size": 5,'num_layers': 9,}"""def __init__(self,num_chars,out_channels,hidden_channels,hidden_channels_dp,encoder_type,encoder_params,dropout_p_dp=0.1,mean_only=False,use_prenet=True,c_in_channels=0,):super().__init__()# class argumentsself.num_chars = num_charsself.out_channels = out_channelsself.hidden_channels = hidden_channelsself.hidden_channels_dp = hidden_channels_dpself.dropout_p_dp = dropout_p_dpself.mean_only = mean_onlyself.use_prenet = use_prenetself.c_in_channels = c_in_channelsself.encoder_type = encoder_type# embedding layerself.emb = nn.Embedding(num_chars, hidden_channels)nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)# init encoder moduleif encoder_type.lower() == "rel_pos_transformer":if use_prenet:self.prenet = ResidualConv1dLayerNormBlock(hidden_channels, hidden_channels, hidden_channels, kernel_size=5, num_layers=3, dropout_p=0.5)self.encoder = RelativePositionTransformer(hidden_channels, hidden_channels, hidden_channels, **encoder_params)elif encoder_type.lower() == "gated_conv":self.encoder = GatedConvBlock(hidden_channels, **encoder_params)elif encoder_type.lower() == "residual_conv_bn":if use_prenet:self.prenet = nn.Sequential(nn.Conv1d(hidden_channels, hidden_channels, 1), nn.ReLU())self.encoder = ResidualConv1dBNBlock(hidden_channels, hidden_channels, hidden_channels, **encoder_params)self.postnet = nn.Sequential(nn.Conv1d(self.hidden_channels, self.hidden_channels, 1), nn.BatchNorm1d(self.hidden_channels))elif encoder_type.lower() == "time_depth_separable":if use_prenet:self.prenet = ResidualConv1dLayerNormBlock(hidden_channels, hidden_channels, hidden_channels, kernel_size=5, num_layers=3, dropout_p=0.5)self.encoder = TimeDepthSeparableConvBlock(hidden_channels, hidden_channels, hidden_channels, **encoder_params)else:raise ValueError(" [!] Unkown encoder type.")# final projection layersself.proj_m = nn.Conv1d(hidden_channels, out_channels, 1)if not mean_only:self.proj_s = nn.Conv1d(hidden_channels, out_channels, 1)# duration predictorself.duration_predictor = DurationPredictor(hidden_channels + c_in_channels, hidden_channels_dp, 3, dropout_p_dp)def forward(self, x, x_lengths, g=None):"""Shapes:- x: :math:`[B, C, T]`- x_lengths: :math:`[B]`- g (optional): :math:`[B, 1, T]`"""# embedding layer# [B ,T, D]x = self.emb(x) * math.sqrt(self.hidden_channels)# [B, D, T]x = torch.transpose(x, 1, -1)# compute input sequence maskx_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)# prenetif hasattr(self, "prenet") and self.use_prenet:x = self.prenet(x, x_mask)# encoderx = self.encoder(x, x_mask)# postnetif hasattr(self, "postnet"):x = self.postnet(x) * x_mask# set duration predictor inputif g is not None:g_exp = g.expand(-1, -1, x.size(-1))x_dp = torch.cat([x.detach(), g_exp], 1)else:x_dp = x.detach()# final projection layerx_m = self.proj_m(x) * x_maskif not self.mean_only:x_logs = self.proj_s(x) * x_maskelse:x_logs = torch.zeros_like(x_m)# duration predictorlogw = self.duration_predictor(x_dp, x_mask)return x_m, x_logs, logw, x_mask

glow_tts.py

import math
from typing import Dict, List, Tuple, Unionimport torch
from coqpit import Coqpit
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as Ffrom TTS.tts.configs.glow_tts_config import GlowTTSConfig
from decoder import Decoder
from encoder import Encoder
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.io import load_fsspecclass GlowTTS(BaseTTS):"""GlowTTS model.Paper::https://arxiv.org/abs/2005.11129Paper abstract::Recently, text-to-speech (TTS) models such as FastSpeech and ParaNet have been proposed to generatemel-spectrograms from text in parallel. Despite the advantage, the parallel TTS models cannot be trainedwithout guidance from autoregressive TTS models as their external aligners. In this work, we propose Glow-TTS,a flow-based generative model for parallel TTS that does not require any external aligner. By combining theproperties of flows and dynamic programming, the proposed model searches for the most probable monotonicalignment between text and the latent representation of speech on its own. We demonstrate that enforcing hardmonotonic alignments enables robust TTS, which generalizes to long utterances, and employing generative flowsenables fast, diverse, and controllable speech synthesis. Glow-TTS obtains an order-of-magnitude speed-up overthe autoregressive model, Tacotron 2, at synthesis with comparable speech quality. We further show that ourmodel can be easily extended to a multi-speaker setting.Check :class:`TTS.tts.configs.glow_tts_config.GlowTTSConfig` for class arguments.Examples:Init only model layers.>>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig>>> from TTS.tts.models.glow_tts import GlowTTS>>> config = GlowTTSConfig(num_chars=2)>>> model = GlowTTS(config)Fully init a model ready for action. All the class attributes and class members(e.g Tokenizer, AudioProcessor, etc.). are initialized internally based on config values.>>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig>>> from TTS.tts.models.glow_tts import GlowTTS>>> config = GlowTTSConfig()>>> model = GlowTTS.init_from_config(config, verbose=False)"""def __init__(self,config: GlowTTSConfig,ap: "AudioProcessor" = None,tokenizer: "TTSTokenizer" = None,speaker_manager: SpeakerManager = None,):super().__init__(config, ap, tokenizer, speaker_manager)# pass all config fields to `self`# for fewer code changeself.config = configfor key in config:setattr(self, key, config[key])self.decoder_output_dim = config.out_channels# init multi-speaker layers if necessaryself.init_multispeaker(config)self.run_data_dep_init = config.data_dep_init_steps > 0self.encoder = Encoder(self.num_chars,out_channels=self.out_channels,hidden_channels=self.hidden_channels_enc,hidden_channels_dp=self.hidden_channels_dp,encoder_type=self.encoder_type,encoder_params=self.encoder_params,mean_only=self.mean_only,use_prenet=self.use_encoder_prenet,dropout_p_dp=self.dropout_p_dp,c_in_channels=self.c_in_channels,)self.decoder = Decoder(self.out_channels,self.hidden_channels_dec,self.kernel_size_dec,self.dilation_rate,self.num_flow_blocks_dec,self.num_block_layers,dropout_p=self.dropout_p_dec,num_splits=self.num_splits,num_squeeze=self.num_squeeze,sigmoid_scale=self.sigmoid_scale,c_in_channels=self.c_in_channels,)def init_multispeaker(self, config: Coqpit):"""Init speaker embedding layer if `use_speaker_embedding` is True and set the expected speaker embeddingvector dimension to the encoder layer channel size. If model uses d-vectors, then it only setsspeaker embedding vector dimension to the d-vector dimension from the config.Args:config (Coqpit): Model configuration."""self.embedded_speaker_dim = 0# set number of speakers - if num_speakers is set in config, use it, otherwise use speaker_managerif self.speaker_manager is not None:self.num_speakers = self.speaker_manager.num_speakers# set ultimate speaker embedding sizeif config.use_d_vector_file:self.embedded_speaker_dim = (config.d_vector_dim if "d_vector_dim" in config and config.d_vector_dim is not None else 512)if self.speaker_manager is not None:assert (config.d_vector_dim == self.speaker_manager.embedding_dim), " [!] d-vector dimension mismatch b/w config and speaker manager."# init speaker embedding layerif config.use_speaker_embedding and not config.use_d_vector_file:print(" > Init speaker_embedding layer.")self.embedded_speaker_dim = self.hidden_channels_encself.emb_g = nn.Embedding(self.num_speakers, self.hidden_channels_enc)nn.init.uniform_(self.emb_g.weight, -0.1, 0.1)# set conditioning dimensionsself.c_in_channels = self.embedded_speaker_dim@staticmethoddef compute_outputs(attn, o_mean, o_log_scale, x_mask):"""Compute and format the mode outputs with the given alignment map"""y_mean = torch.matmul(attn.squeeze(1).transpose(1, 2), o_mean.transpose(1, 2)).transpose(1, 2)  # [b, t', t], [b, t, d] -> [b, d, t']y_log_scale = torch.matmul(attn.squeeze(1).transpose(1, 2), o_log_scale.transpose(1, 2)).transpose(1, 2)  # [b, t', t], [b, t, d] -> [b, d, t']# compute total duration with adjustmento_attn_dur = torch.log(1 + torch.sum(attn, -1)) * x_maskreturn y_mean, y_log_scale, o_attn_durdef unlock_act_norm_layers(self):"""Unlock activation normalization layers for data depended initalization."""for f in self.decoder.flows:if getattr(f, "set_ddi", False):f.set_ddi(True)def lock_act_norm_layers(self):"""Lock activation normalization layers."""for f in self.decoder.flows:if getattr(f, "set_ddi", False):f.set_ddi(False)def _set_speaker_input(self, aux_input: Dict):if aux_input is None:d_vectors = Nonespeaker_ids = Noneelse:d_vectors = aux_input.get("d_vectors", None)speaker_ids = aux_input.get("speaker_ids", None)if d_vectors is not None and speaker_ids is not None:raise ValueError("[!] Cannot use d-vectors and speaker-ids together.")if speaker_ids is not None and not hasattr(self, "emb_g"):raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.")g = speaker_ids if speaker_ids is not None else d_vectorsreturn gdef _speaker_embedding(self, aux_input: Dict) -> Union[torch.tensor, None]:g = self._set_speaker_input(aux_input)# speaker embeddingif g is not None:if hasattr(self, "emb_g"):# use speaker embedding layerif not g.size():  # if is a scalarg = g.unsqueeze(0)  # unsqueezeg = F.normalize(self.emb_g(g)).unsqueeze(-1)  # [b, h, 1]else:# use d-vectorg = F.normalize(g).unsqueeze(-1)  # [b, h, 1]return gdef forward(self, x, x_lengths, y, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None}):  # pylint: disable=dangerous-default-value"""Args:x (torch.Tensor):Input text sequence ids. :math:`[B, T_en]`x_lengths (torch.Tensor):Lengths of input text sequences. :math:`[B]`y (torch.Tensor):Target mel-spectrogram frames. :math:`[B, T_de, C_mel]`y_lengths (torch.Tensor):Lengths of target mel-spectrogram frames. :math:`[B]`aux_input (Dict):Auxiliary inputs. `d_vectors` is speaker embedding vectors for a multi-speaker model.:math:`[B, D_vec]`. `speaker_ids` is speaker ids for a multi-speaker model usind speaker-embeddinglayer. :math:`B`Returns:Dict:- z: :math: `[B, T_de, C]`- logdet: :math:`B`- y_mean: :math:`[B, T_de, C]`- y_log_scale: :math:`[B, T_de, C]`- alignments: :math:`[B, T_en, T_de]`- durations_log: :math:`[B, T_en, 1]`- total_durations_log: :math:`[B, T_en, 1]`"""# [B, T, C] -> [B, C, T]y = y.transpose(1, 2)y_max_length = y.size(2)# norm speaker embeddingsg = self._speaker_embedding(aux_input)# embedding passo_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g)# drop redisual frames wrt num_squeeze and set y_lengths.y, y_lengths, y_max_length, attn = self.preprocess(y, y_lengths, y_max_length, None)# create masksy_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)# [B, 1, T_en, T_de]attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)# decoder passz, logdet = self.decoder(y, y_mask, g=g, reverse=False)# find the alignment pathwith torch.no_grad():o_scale = torch.exp(-2 * o_log_scale)logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - o_log_scale, [1]).unsqueeze(-1)  # [b, t, 1]logp2 = torch.matmul(o_scale.transpose(1, 2), -0.5 * (z**2))  # [b, t, d] x [b, d, t'] = [b, t, t']logp3 = torch.matmul((o_mean * o_scale).transpose(1, 2), z)  # [b, t, d] x [b, d, t'] = [b, t, t']logp4 = torch.sum(-0.5 * (o_mean**2) * o_scale, [1]).unsqueeze(-1)  # [b, t, 1]logp = logp1 + logp2 + logp3 + logp4  # [b, t, t']attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask)attn = attn.squeeze(1).permute(0, 2, 1)outputs = {"z": z.transpose(1, 2),"logdet": logdet,"y_mean": y_mean.transpose(1, 2),"y_log_scale": y_log_scale.transpose(1, 2),"alignments": attn,"durations_log": o_dur_log.transpose(1, 2),"total_durations_log": o_attn_dur.transpose(1, 2),}return outputs@torch.no_grad()def inference_with_MAS(self, x, x_lengths, y=None, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None}):  # pylint: disable=dangerous-default-value"""It's similar to the teacher forcing in Tacotron.It was proposed in: https://arxiv.org/abs/2104.05557Shapes:- x: :math:`[B, T]`- x_lenghts: :math:`B`- y: :math:`[B, T, C]`- y_lengths: :math:`B`- g: :math:`[B, C] or B`"""y = y.transpose(1, 2)y_max_length = y.size(2)# norm speaker embeddingsg = self._speaker_embedding(aux_input)# embedding passo_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g)# drop redisual frames wrt num_squeeze and set y_lengths.y, y_lengths, y_max_length, attn = self.preprocess(y, y_lengths, y_max_length, None)# create masksy_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)# decoder passz, logdet = self.decoder(y, y_mask, g=g, reverse=False)# find the alignment path between z and encoder outputo_scale = torch.exp(-2 * o_log_scale)logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - o_log_scale, [1]).unsqueeze(-1)  # [b, t, 1]logp2 = torch.matmul(o_scale.transpose(1, 2), -0.5 * (z**2))  # [b, t, d] x [b, d, t'] = [b, t, t']logp3 = torch.matmul((o_mean * o_scale).transpose(1, 2), z)  # [b, t, d] x [b, d, t'] = [b, t, t']logp4 = torch.sum(-0.5 * (o_mean**2) * o_scale, [1]).unsqueeze(-1)  # [b, t, 1]logp = logp1 + logp2 + logp3 + logp4  # [b, t, t']attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask)attn = attn.squeeze(1).permute(0, 2, 1)# get predited aligned distributionz = y_mean * y_mask# reverse the decoder and predict using the aligned distributiony, logdet = self.decoder(z, y_mask, g=g, reverse=True)outputs = {"model_outputs": z.transpose(1, 2),"logdet": logdet,"y_mean": y_mean.transpose(1, 2),"y_log_scale": y_log_scale.transpose(1, 2),"alignments": attn,"durations_log": o_dur_log.transpose(1, 2),"total_durations_log": o_attn_dur.transpose(1, 2),}return outputs@torch.no_grad()def decoder_inference(self, y, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None}):  # pylint: disable=dangerous-default-value"""Shapes:- y: :math:`[B, T, C]`- y_lengths: :math:`B`- g: :math:`[B, C] or B`"""y = y.transpose(1, 2)y_max_length = y.size(2)g = self._speaker_embedding(aux_input)y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(y.dtype)# decoder passz, logdet = self.decoder(y, y_mask, g=g, reverse=False)# reverse decoder and predicty, logdet = self.decoder(z, y_mask, g=g, reverse=True)outputs = {}outputs["model_outputs"] = y.transpose(1, 2)outputs["logdet"] = logdetreturn outputs@torch.no_grad()def inference(self, x, aux_input={"x_lengths": None, "d_vectors": None, "speaker_ids": None}):  # pylint: disable=dangerous-default-valuex_lengths = aux_input["x_lengths"]g = self._speaker_embedding(aux_input)# embedding passo_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g)# compute output durationsw = (torch.exp(o_dur_log) - 1) * x_mask * self.length_scalew_ceil = torch.clamp_min(torch.ceil(w), 1)y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()y_max_length = None# compute masksy_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)# compute attention maskattn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask)z = (y_mean + torch.exp(y_log_scale) * torch.randn_like(y_mean) * self.inference_noise_scale) * y_mask# decoder passy, logdet = self.decoder(z, y_mask, g=g, reverse=True)attn = attn.squeeze(1).permute(0, 2, 1)outputs = {"model_outputs": y.transpose(1, 2),"logdet": logdet,"y_mean": y_mean.transpose(1, 2),"y_log_scale": y_log_scale.transpose(1, 2),"alignments": attn,"durations_log": o_dur_log.transpose(1, 2),"total_durations_log": o_attn_dur.transpose(1, 2),}return outputsdef train_step(self, batch: dict, criterion: nn.Module):"""A single training step. Forward pass and loss computation. Run data depended initialization for thefirst `config.data_dep_init_steps` steps.Args:batch (dict): [description]criterion (nn.Module): [description]"""text_input = batch["text_input"]text_lengths = batch["text_lengths"]mel_input = batch["mel_input"]mel_lengths = batch["mel_lengths"]d_vectors = batch["d_vectors"]speaker_ids = batch["speaker_ids"]if self.run_data_dep_init and self.training:# compute data-dependent initialization of activation norm layersself.unlock_act_norm_layers()with torch.no_grad():_ = self.forward(text_input,text_lengths,mel_input,mel_lengths,aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids},)outputs = Noneloss_dict = Noneself.lock_act_norm_layers()else:# normal training stepoutputs = self.forward(text_input,text_lengths,mel_input,mel_lengths,aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids},)with autocast(enabled=False):  # avoid mixed_precision in criterionloss_dict = criterion(outputs["z"].float(),outputs["y_mean"].float(),outputs["y_log_scale"].float(),outputs["logdet"].float(),mel_lengths,outputs["durations_log"].float(),outputs["total_durations_log"].float(),text_lengths,)return outputs, loss_dictdef _create_logs(self, batch, outputs, ap):alignments = outputs["alignments"]text_input = batch["text_input"][:1] if batch["text_input"] is not None else Nonetext_lengths = batch["text_lengths"]mel_input = batch["mel_input"]d_vectors = batch["d_vectors"][:1] if batch["d_vectors"] is not None else Nonespeaker_ids = batch["speaker_ids"][:1] if batch["speaker_ids"] is not None else None# model runs reverse flow to predict spectrogramspred_outputs = self.inference(text_input,aux_input={"x_lengths": text_lengths[:1], "d_vectors": d_vectors, "speaker_ids": speaker_ids},)model_outputs = pred_outputs["model_outputs"]pred_spec = model_outputs[0].data.cpu().numpy()gt_spec = mel_input[0].data.cpu().numpy()align_img = alignments[0].data.cpu().numpy()figures = {"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),"alignment": plot_alignment(align_img, output_fig=False),}# Sample audiotrain_audio = ap.inv_melspectrogram(pred_spec.T)return figures, {"audio": train_audio}def train_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:  # pylint: disable=no-self-usefigures, audios = self._create_logs(batch, outputs, self.ap)logger.train_figures(steps, figures)logger.train_audios(steps, audios, self.ap.sample_rate)@torch.no_grad()def eval_step(self, batch: dict, criterion: nn.Module):return self.train_step(batch, criterion)def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:figures, audios = self._create_logs(batch, outputs, self.ap)logger.eval_figures(steps, figures)logger.eval_audios(steps, audios, self.ap.sample_rate)@torch.no_grad()def test_run(self, assets: Dict) -> Tuple[Dict, Dict]:"""Generic test run for `tts` models used by `Trainer`.You can override this for a different behaviour.Returns:Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard."""print(" | > Synthesizing test sentences.")test_audios = {}test_figures = {}test_sentences = self.config.test_sentencesaux_inputs = self._get_test_aux_input()if len(test_sentences) == 0:print(" | [!] No test sentences provided.")else:for idx, sen in enumerate(test_sentences):outputs = synthesis(self,sen,self.config,"cuda" in str(next(self.parameters()).device),speaker_id=aux_inputs["speaker_id"],d_vector=aux_inputs["d_vector"],style_wav=aux_inputs["style_wav"],use_griffin_lim=True,do_trim_silence=False,)test_audios["{}-audio".format(idx)] = outputs["wav"]test_figures["{}-prediction".format(idx)] = plot_spectrogram(outputs["outputs"]["model_outputs"], self.ap, output_fig=False)test_figures["{}-alignment".format(idx)] = plot_alignment(outputs["alignments"], output_fig=False)return test_figures, test_audiosdef preprocess(self, y, y_lengths, y_max_length, attn=None):if y_max_length is not None:y_max_length = (y_max_length // self.num_squeeze) * self.num_squeezey = y[:, :, :y_max_length]if attn is not None:attn = attn[:, :, :, :y_max_length]y_lengths = torch.div(y_lengths, self.num_squeeze, rounding_mode="floor") * self.num_squeezereturn y, y_lengths, y_max_length, attndef store_inverse(self):self.decoder.store_inverse()def load_checkpoint(self, config, checkpoint_path, eval=False):  # pylint: disable=unused-argument, redefined-builtinstate = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))self.load_state_dict(state["model"])if eval:self.eval()self.store_inverse()assert not self.training@staticmethoddef get_criterion():from TTS.tts.layers.losses import GlowTTSLoss  # pylint: disable=import-outside-toplevelreturn GlowTTSLoss()def on_train_step_start(self, trainer):"""Decide on every training step wheter enable/disable data depended initialization."""self.run_data_dep_init = trainer.total_steps_done < self.data_dep_init_steps@staticmethoddef init_from_config(config: "GlowTTSConfig", samples: Union[List[List], List[Dict]] = None, verbose=True):"""Initiate model from configArgs:config (VitsConfig): Model config.samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.Defaults to None.verbose (bool): If True, print init messages. Defaults to True."""from TTS.utils.audio import AudioProcessorap = AudioProcessor.init_from_config(config, verbose)tokenizer, new_config = TTSTokenizer.init_from_config(config)speaker_manager = SpeakerManager.init_from_config(config, samples)return GlowTTS(new_config, ap, tokenizer, speaker_manager)

train.py
 

from TTS.tts.configs.shared_configs import BaseDatasetConfig
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.utils.audio import AudioProcessor
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.datasets import load_tts_samples
import os
import numpy as np
import torch
from glow_tts import GlowTTS
from trainer import Trainer, TrainerArgs
from TTS.utils.radam import RAdam
from trainer.torch import NoamLR
from TTS.tts.layers.losses import GlowTTSLossdef init_config():dataset_config = BaseDatasetConfig(path='train/LJSpeech-1.1/',meta_file_train='metadata.csv',formatter='ljspeech')config = GlowTTSConfig(batch_size=32,eval_batch_size=16,num_loader_workers=4,num_eval_loader_workers=4,run_eval=True,test_delay_epochs=-1,epochs=3,text_cleaner='phoneme_cleaners',use_phonemes=True,phoneme_language='en-us',phoneme_cache_path='train/phoneme_cache',print_step=25,print_eval=False,mixed_precision=True,output_path='train',datasets=[dataset_config],save_step=1000,data_dep_init_steps=0,)processor = AudioProcessor.init_from_config(config)tokenizer, config = TTSTokenizer.init_from_config(config)datas, _ = load_tts_samples(dataset_config,eval_split=True,eval_split_size=0.001)# 排序lens = [os.path.getsize(i['audio_file']) for i in datas]ids = np.argsort(lens)datas = [datas[i] for i in ids]return config, processor, tokenizer, datasconfig, processor, tokenizer, datas = init_config()out = processor.load_wav('train/LJSpeech-1.1/wavs/LJ001-0108.wav')
print('processor.load_wav=', out, out.shape)out = tokenizer.text_to_ids('it is obvious that legibility is the first thing to be aimed at in the forms of the letters'
)
print('tokenizer.text_to_ids=', out, len(out))out = processor.melspectrogram(processor.load_wav('train/LJSpeech-1.1/wavs/LJ001-0108.wav'))
print('processor.melspectrogram=', out.shape)len(datas), datas[:2]def init_model(from_trainer):model = GlowTTS(config, processor, tokenizer, speaker_manager=None)model.run_data_dep_init = Falseif from_trainer:trainer = Trainer(args=TrainerArgs(),config=config,output_path='train',model=model,train_samples=datas,eval_samples=None)optimizer = trainer.get_optimizer(model, config)scheduler = trainer.get_scheduler(model, config, optimizer)criterion = trainer.get_criterion(model)loader = trainer.get_train_dataloader({}, datas, verbose=True)else:optimizer = RAdam(model.parameters(),lr=1e-3,betas=[0.9, 0.998],weight_decay=1e-6)scheduler = NoamLR(optimizer, warmup_steps=4000)criterion = GlowTTSLoss()loader = model.get_data_loader(config=config,assets={},is_eval=False,samples=datas,verbose=True,num_gpus=0)return model, optimizer, scheduler, criterion, loadermodel, optimizer, scheduler, criterion, loader = init_model(from_trainer=False)# 统计参数量
print(sum(i.numel() for i in model.parameters()) / 10000)#optimizer, scheduler, criterion, loaderdef train():global modeldevice = 'cuda' if torch.cuda.is_available() else 'cpu'model.train()model = model.to(device)for epoch in range(config.epochs):for i, data in enumerate(loader):data = model.format_batch(data)for k in data.keys():if isinstance(data[k], torch.Tensor):data[k] = data[k].to(device)print("#############################################")print(data['text_input'].shape)print(data['mel_input'].shape)print("====================================================")_, loss_dict = model.train_step(data, criterion)model.zero_grad(set_to_none=True)loss_dict['loss'].backward()torch.nn.utils.clip_grad_norm_(model.parameters(), 5)optimizer.step()optimizer.zero_grad(set_to_none=True)if i % 2 == 0:lr = optimizer.state_dict()['param_groups'][0]['lr']print(epoch, i, loss_dict['loss'].item(), lr)scheduler.step()config.save_json('train/config.json')model = model.cpu()torch.save({'config': config.to_dict(),'model': model.state_dict()}, 'train/model.pth')if __name__ == '__main__':train()

其中train.py是训练TTS模型的入口,训练好的模型保存在train文件夹下

这篇关于一个轻量级的TTS模型实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074896

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2