一个轻量级的TTS模型实现

2024-06-19 11:28
文章标签 实现 模型 轻量级 tts

本文主要是介绍一个轻量级的TTS模型实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.环境

python 版本 3.9

2.训练数据集

本次采用LJSpeech数据集,百度网盘下载地址 链接:https://pan.baidu.com/s/1DDFmPpHQrTR_NvjAfwX-QA 
提取码:1234

3.安装依赖

pip install TTS

4.工程结构

5代码部分

decoder.py

import torch
from torch import nnfrom TTS.tts.layers.generic.normalization import ActNorm
from TTS.tts.layers.glow_tts.glow import CouplingBlock, InvConvNeardef squeeze(x, x_mask=None, num_sqz=2):"""GlowTTS squeeze operationIncrease number of channels and reduce number of time stepsby the same factor.Note:each 's' is a n-dimensional vector.``[s1,s2,s3,s4,s5,s6] --> [[s1, s3, s5], [s2, s4, s6]]``"""b, c, t = x.size()t = (t // num_sqz) * num_sqzx = x[:, :, :t]x_sqz = x.view(b, c, t // num_sqz, num_sqz)x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * num_sqz, t // num_sqz)if x_mask is not None:x_mask = x_mask[:, :, num_sqz - 1 :: num_sqz]else:x_mask = torch.ones(b, 1, t // num_sqz).to(device=x.device, dtype=x.dtype)return x_sqz * x_mask, x_maskdef unsqueeze(x, x_mask=None, num_sqz=2):"""GlowTTS unsqueeze operation (revert the squeeze)Note:each 's' is a n-dimensional vector.``[[s1, s3, s5], [s2, s4, s6]] --> [[s1, s3, s5, s2, s4, s6]]``"""b, c, t = x.size()x_unsqz = x.view(b, num_sqz, c // num_sqz, t)x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // num_sqz, t * num_sqz)if x_mask is not None:x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, num_sqz).view(b, 1, t * num_sqz)else:x_mask = torch.ones(b, 1, t * num_sqz).to(device=x.device, dtype=x.dtype)return x_unsqz * x_mask, x_maskclass Decoder(nn.Module):"""Stack of Glow Decoder Modules.::Squeeze -> ActNorm -> InvertibleConv1x1 -> AffineCoupling -> UnsqueezeArgs:in_channels (int): channels of input tensor.hidden_channels (int): hidden decoder channels.kernel_size (int): Coupling block kernel size. (Wavenet filter kernel size.)dilation_rate (int): rate to increase dilation by each layer in a decoder block.num_flow_blocks (int): number of decoder blocks.num_coupling_layers (int): number coupling layers. (number of wavenet layers.)dropout_p (float): wavenet dropout rate.sigmoid_scale (bool): enable/disable sigmoid scaling in coupling layer."""def __init__(self,in_channels,hidden_channels,kernel_size,dilation_rate,num_flow_blocks,num_coupling_layers,dropout_p=0.0,num_splits=4,num_squeeze=2,sigmoid_scale=False,c_in_channels=0,):super().__init__()self.in_channels = in_channelsself.hidden_channels = hidden_channelsself.kernel_size = kernel_sizeself.dilation_rate = dilation_rateself.num_flow_blocks = num_flow_blocksself.num_coupling_layers = num_coupling_layersself.dropout_p = dropout_pself.num_splits = num_splitsself.num_squeeze = num_squeezeself.sigmoid_scale = sigmoid_scaleself.c_in_channels = c_in_channelsself.flows = nn.ModuleList()for _ in range(num_flow_blocks):self.flows.append(ActNorm(channels=in_channels * num_squeeze))self.flows.append(InvConvNear(channels=in_channels * num_squeeze, num_splits=num_splits))self.flows.append(CouplingBlock(in_channels * num_squeeze,hidden_channels,kernel_size=kernel_size,dilation_rate=dilation_rate,num_layers=num_coupling_layers,c_in_channels=c_in_channels,dropout_p=dropout_p,sigmoid_scale=sigmoid_scale,))def forward(self, x, x_mask, g=None, reverse=False):"""Shapes:- x:  :math:`[B, C, T]`- x_mask: :math:`[B, 1 ,T]`- g: :math:`[B, C]`"""if not reverse:flows = self.flowslogdet_tot = 0else:flows = reversed(self.flows)logdet_tot = Noneif self.num_squeeze > 1:x, x_mask = squeeze(x, x_mask, self.num_squeeze)for f in flows:if not reverse:x, logdet = f(x, x_mask, g=g, reverse=reverse)logdet_tot += logdetelse:x, logdet = f(x, x_mask, g=g, reverse=reverse)if self.num_squeeze > 1:x, x_mask = unsqueeze(x, x_mask, self.num_squeeze)return x, logdet_totdef store_inverse(self):for f in self.flows:f.store_inverse()

encoder.py

import mathimport torch
from torch import nnfrom TTS.tts.layers.generic.gated_conv import GatedConvBlock
from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock
from TTS.tts.layers.generic.time_depth_sep_conv import TimeDepthSeparableConvBlock
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.layers.glow_tts.glow import ResidualConv1dLayerNormBlock
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
from TTS.tts.utils.helpers import sequence_maskclass Encoder(nn.Module):"""Glow-TTS encoder module.::embedding -> <prenet> -> encoder_module -> <postnet> --> proj_mean||-> proj_var||-> concat -> duration_predictor↑speaker_embedArgs:num_chars (int): number of characters.out_channels (int): number of output channels.hidden_channels (int): encoder's embedding size.hidden_channels_ffn (int): transformer's feed-forward channels.kernel_size (int): kernel size for conv layers and duration predictor.dropout_p (float): dropout rate for any dropout layer.mean_only (bool): if True, output only mean values and use constant std.use_prenet (bool): if True, use pre-convolutional layers before transformer layers.c_in_channels (int): number of channels in conditional input.Shapes:- input: (B, T, C)::suggested encoder params...for encoder_type == 'rel_pos_transformer'encoder_params={'kernel_size':3,'dropout_p': 0.1,'num_layers': 6,'num_heads': 2,'hidden_channels_ffn': 768,  # 4 times the hidden_channels'input_length': None}for encoder_type == 'gated_conv'encoder_params={'kernel_size':5,'dropout_p': 0.1,'num_layers': 9,}for encoder_type == 'residual_conv_bn'encoder_params={"kernel_size": 4,"dilations": [1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1],"num_conv_blocks": 2,"num_res_blocks": 13}for encoder_type == 'time_depth_separable'encoder_params={"kernel_size": 5,'num_layers': 9,}"""def __init__(self,num_chars,out_channels,hidden_channels,hidden_channels_dp,encoder_type,encoder_params,dropout_p_dp=0.1,mean_only=False,use_prenet=True,c_in_channels=0,):super().__init__()# class argumentsself.num_chars = num_charsself.out_channels = out_channelsself.hidden_channels = hidden_channelsself.hidden_channels_dp = hidden_channels_dpself.dropout_p_dp = dropout_p_dpself.mean_only = mean_onlyself.use_prenet = use_prenetself.c_in_channels = c_in_channelsself.encoder_type = encoder_type# embedding layerself.emb = nn.Embedding(num_chars, hidden_channels)nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)# init encoder moduleif encoder_type.lower() == "rel_pos_transformer":if use_prenet:self.prenet = ResidualConv1dLayerNormBlock(hidden_channels, hidden_channels, hidden_channels, kernel_size=5, num_layers=3, dropout_p=0.5)self.encoder = RelativePositionTransformer(hidden_channels, hidden_channels, hidden_channels, **encoder_params)elif encoder_type.lower() == "gated_conv":self.encoder = GatedConvBlock(hidden_channels, **encoder_params)elif encoder_type.lower() == "residual_conv_bn":if use_prenet:self.prenet = nn.Sequential(nn.Conv1d(hidden_channels, hidden_channels, 1), nn.ReLU())self.encoder = ResidualConv1dBNBlock(hidden_channels, hidden_channels, hidden_channels, **encoder_params)self.postnet = nn.Sequential(nn.Conv1d(self.hidden_channels, self.hidden_channels, 1), nn.BatchNorm1d(self.hidden_channels))elif encoder_type.lower() == "time_depth_separable":if use_prenet:self.prenet = ResidualConv1dLayerNormBlock(hidden_channels, hidden_channels, hidden_channels, kernel_size=5, num_layers=3, dropout_p=0.5)self.encoder = TimeDepthSeparableConvBlock(hidden_channels, hidden_channels, hidden_channels, **encoder_params)else:raise ValueError(" [!] Unkown encoder type.")# final projection layersself.proj_m = nn.Conv1d(hidden_channels, out_channels, 1)if not mean_only:self.proj_s = nn.Conv1d(hidden_channels, out_channels, 1)# duration predictorself.duration_predictor = DurationPredictor(hidden_channels + c_in_channels, hidden_channels_dp, 3, dropout_p_dp)def forward(self, x, x_lengths, g=None):"""Shapes:- x: :math:`[B, C, T]`- x_lengths: :math:`[B]`- g (optional): :math:`[B, 1, T]`"""# embedding layer# [B ,T, D]x = self.emb(x) * math.sqrt(self.hidden_channels)# [B, D, T]x = torch.transpose(x, 1, -1)# compute input sequence maskx_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)# prenetif hasattr(self, "prenet") and self.use_prenet:x = self.prenet(x, x_mask)# encoderx = self.encoder(x, x_mask)# postnetif hasattr(self, "postnet"):x = self.postnet(x) * x_mask# set duration predictor inputif g is not None:g_exp = g.expand(-1, -1, x.size(-1))x_dp = torch.cat([x.detach(), g_exp], 1)else:x_dp = x.detach()# final projection layerx_m = self.proj_m(x) * x_maskif not self.mean_only:x_logs = self.proj_s(x) * x_maskelse:x_logs = torch.zeros_like(x_m)# duration predictorlogw = self.duration_predictor(x_dp, x_mask)return x_m, x_logs, logw, x_mask

glow_tts.py

import math
from typing import Dict, List, Tuple, Unionimport torch
from coqpit import Coqpit
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as Ffrom TTS.tts.configs.glow_tts_config import GlowTTSConfig
from decoder import Decoder
from encoder import Encoder
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.io import load_fsspecclass GlowTTS(BaseTTS):"""GlowTTS model.Paper::https://arxiv.org/abs/2005.11129Paper abstract::Recently, text-to-speech (TTS) models such as FastSpeech and ParaNet have been proposed to generatemel-spectrograms from text in parallel. Despite the advantage, the parallel TTS models cannot be trainedwithout guidance from autoregressive TTS models as their external aligners. In this work, we propose Glow-TTS,a flow-based generative model for parallel TTS that does not require any external aligner. By combining theproperties of flows and dynamic programming, the proposed model searches for the most probable monotonicalignment between text and the latent representation of speech on its own. We demonstrate that enforcing hardmonotonic alignments enables robust TTS, which generalizes to long utterances, and employing generative flowsenables fast, diverse, and controllable speech synthesis. Glow-TTS obtains an order-of-magnitude speed-up overthe autoregressive model, Tacotron 2, at synthesis with comparable speech quality. We further show that ourmodel can be easily extended to a multi-speaker setting.Check :class:`TTS.tts.configs.glow_tts_config.GlowTTSConfig` for class arguments.Examples:Init only model layers.>>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig>>> from TTS.tts.models.glow_tts import GlowTTS>>> config = GlowTTSConfig(num_chars=2)>>> model = GlowTTS(config)Fully init a model ready for action. All the class attributes and class members(e.g Tokenizer, AudioProcessor, etc.). are initialized internally based on config values.>>> from TTS.tts.configs.glow_tts_config import GlowTTSConfig>>> from TTS.tts.models.glow_tts import GlowTTS>>> config = GlowTTSConfig()>>> model = GlowTTS.init_from_config(config, verbose=False)"""def __init__(self,config: GlowTTSConfig,ap: "AudioProcessor" = None,tokenizer: "TTSTokenizer" = None,speaker_manager: SpeakerManager = None,):super().__init__(config, ap, tokenizer, speaker_manager)# pass all config fields to `self`# for fewer code changeself.config = configfor key in config:setattr(self, key, config[key])self.decoder_output_dim = config.out_channels# init multi-speaker layers if necessaryself.init_multispeaker(config)self.run_data_dep_init = config.data_dep_init_steps > 0self.encoder = Encoder(self.num_chars,out_channels=self.out_channels,hidden_channels=self.hidden_channels_enc,hidden_channels_dp=self.hidden_channels_dp,encoder_type=self.encoder_type,encoder_params=self.encoder_params,mean_only=self.mean_only,use_prenet=self.use_encoder_prenet,dropout_p_dp=self.dropout_p_dp,c_in_channels=self.c_in_channels,)self.decoder = Decoder(self.out_channels,self.hidden_channels_dec,self.kernel_size_dec,self.dilation_rate,self.num_flow_blocks_dec,self.num_block_layers,dropout_p=self.dropout_p_dec,num_splits=self.num_splits,num_squeeze=self.num_squeeze,sigmoid_scale=self.sigmoid_scale,c_in_channels=self.c_in_channels,)def init_multispeaker(self, config: Coqpit):"""Init speaker embedding layer if `use_speaker_embedding` is True and set the expected speaker embeddingvector dimension to the encoder layer channel size. If model uses d-vectors, then it only setsspeaker embedding vector dimension to the d-vector dimension from the config.Args:config (Coqpit): Model configuration."""self.embedded_speaker_dim = 0# set number of speakers - if num_speakers is set in config, use it, otherwise use speaker_managerif self.speaker_manager is not None:self.num_speakers = self.speaker_manager.num_speakers# set ultimate speaker embedding sizeif config.use_d_vector_file:self.embedded_speaker_dim = (config.d_vector_dim if "d_vector_dim" in config and config.d_vector_dim is not None else 512)if self.speaker_manager is not None:assert (config.d_vector_dim == self.speaker_manager.embedding_dim), " [!] d-vector dimension mismatch b/w config and speaker manager."# init speaker embedding layerif config.use_speaker_embedding and not config.use_d_vector_file:print(" > Init speaker_embedding layer.")self.embedded_speaker_dim = self.hidden_channels_encself.emb_g = nn.Embedding(self.num_speakers, self.hidden_channels_enc)nn.init.uniform_(self.emb_g.weight, -0.1, 0.1)# set conditioning dimensionsself.c_in_channels = self.embedded_speaker_dim@staticmethoddef compute_outputs(attn, o_mean, o_log_scale, x_mask):"""Compute and format the mode outputs with the given alignment map"""y_mean = torch.matmul(attn.squeeze(1).transpose(1, 2), o_mean.transpose(1, 2)).transpose(1, 2)  # [b, t', t], [b, t, d] -> [b, d, t']y_log_scale = torch.matmul(attn.squeeze(1).transpose(1, 2), o_log_scale.transpose(1, 2)).transpose(1, 2)  # [b, t', t], [b, t, d] -> [b, d, t']# compute total duration with adjustmento_attn_dur = torch.log(1 + torch.sum(attn, -1)) * x_maskreturn y_mean, y_log_scale, o_attn_durdef unlock_act_norm_layers(self):"""Unlock activation normalization layers for data depended initalization."""for f in self.decoder.flows:if getattr(f, "set_ddi", False):f.set_ddi(True)def lock_act_norm_layers(self):"""Lock activation normalization layers."""for f in self.decoder.flows:if getattr(f, "set_ddi", False):f.set_ddi(False)def _set_speaker_input(self, aux_input: Dict):if aux_input is None:d_vectors = Nonespeaker_ids = Noneelse:d_vectors = aux_input.get("d_vectors", None)speaker_ids = aux_input.get("speaker_ids", None)if d_vectors is not None and speaker_ids is not None:raise ValueError("[!] Cannot use d-vectors and speaker-ids together.")if speaker_ids is not None and not hasattr(self, "emb_g"):raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.")g = speaker_ids if speaker_ids is not None else d_vectorsreturn gdef _speaker_embedding(self, aux_input: Dict) -> Union[torch.tensor, None]:g = self._set_speaker_input(aux_input)# speaker embeddingif g is not None:if hasattr(self, "emb_g"):# use speaker embedding layerif not g.size():  # if is a scalarg = g.unsqueeze(0)  # unsqueezeg = F.normalize(self.emb_g(g)).unsqueeze(-1)  # [b, h, 1]else:# use d-vectorg = F.normalize(g).unsqueeze(-1)  # [b, h, 1]return gdef forward(self, x, x_lengths, y, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None}):  # pylint: disable=dangerous-default-value"""Args:x (torch.Tensor):Input text sequence ids. :math:`[B, T_en]`x_lengths (torch.Tensor):Lengths of input text sequences. :math:`[B]`y (torch.Tensor):Target mel-spectrogram frames. :math:`[B, T_de, C_mel]`y_lengths (torch.Tensor):Lengths of target mel-spectrogram frames. :math:`[B]`aux_input (Dict):Auxiliary inputs. `d_vectors` is speaker embedding vectors for a multi-speaker model.:math:`[B, D_vec]`. `speaker_ids` is speaker ids for a multi-speaker model usind speaker-embeddinglayer. :math:`B`Returns:Dict:- z: :math: `[B, T_de, C]`- logdet: :math:`B`- y_mean: :math:`[B, T_de, C]`- y_log_scale: :math:`[B, T_de, C]`- alignments: :math:`[B, T_en, T_de]`- durations_log: :math:`[B, T_en, 1]`- total_durations_log: :math:`[B, T_en, 1]`"""# [B, T, C] -> [B, C, T]y = y.transpose(1, 2)y_max_length = y.size(2)# norm speaker embeddingsg = self._speaker_embedding(aux_input)# embedding passo_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g)# drop redisual frames wrt num_squeeze and set y_lengths.y, y_lengths, y_max_length, attn = self.preprocess(y, y_lengths, y_max_length, None)# create masksy_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)# [B, 1, T_en, T_de]attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)# decoder passz, logdet = self.decoder(y, y_mask, g=g, reverse=False)# find the alignment pathwith torch.no_grad():o_scale = torch.exp(-2 * o_log_scale)logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - o_log_scale, [1]).unsqueeze(-1)  # [b, t, 1]logp2 = torch.matmul(o_scale.transpose(1, 2), -0.5 * (z**2))  # [b, t, d] x [b, d, t'] = [b, t, t']logp3 = torch.matmul((o_mean * o_scale).transpose(1, 2), z)  # [b, t, d] x [b, d, t'] = [b, t, t']logp4 = torch.sum(-0.5 * (o_mean**2) * o_scale, [1]).unsqueeze(-1)  # [b, t, 1]logp = logp1 + logp2 + logp3 + logp4  # [b, t, t']attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask)attn = attn.squeeze(1).permute(0, 2, 1)outputs = {"z": z.transpose(1, 2),"logdet": logdet,"y_mean": y_mean.transpose(1, 2),"y_log_scale": y_log_scale.transpose(1, 2),"alignments": attn,"durations_log": o_dur_log.transpose(1, 2),"total_durations_log": o_attn_dur.transpose(1, 2),}return outputs@torch.no_grad()def inference_with_MAS(self, x, x_lengths, y=None, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None}):  # pylint: disable=dangerous-default-value"""It's similar to the teacher forcing in Tacotron.It was proposed in: https://arxiv.org/abs/2104.05557Shapes:- x: :math:`[B, T]`- x_lenghts: :math:`B`- y: :math:`[B, T, C]`- y_lengths: :math:`B`- g: :math:`[B, C] or B`"""y = y.transpose(1, 2)y_max_length = y.size(2)# norm speaker embeddingsg = self._speaker_embedding(aux_input)# embedding passo_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g)# drop redisual frames wrt num_squeeze and set y_lengths.y, y_lengths, y_max_length, attn = self.preprocess(y, y_lengths, y_max_length, None)# create masksy_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)# decoder passz, logdet = self.decoder(y, y_mask, g=g, reverse=False)# find the alignment path between z and encoder outputo_scale = torch.exp(-2 * o_log_scale)logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - o_log_scale, [1]).unsqueeze(-1)  # [b, t, 1]logp2 = torch.matmul(o_scale.transpose(1, 2), -0.5 * (z**2))  # [b, t, d] x [b, d, t'] = [b, t, t']logp3 = torch.matmul((o_mean * o_scale).transpose(1, 2), z)  # [b, t, d] x [b, d, t'] = [b, t, t']logp4 = torch.sum(-0.5 * (o_mean**2) * o_scale, [1]).unsqueeze(-1)  # [b, t, 1]logp = logp1 + logp2 + logp3 + logp4  # [b, t, t']attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask)attn = attn.squeeze(1).permute(0, 2, 1)# get predited aligned distributionz = y_mean * y_mask# reverse the decoder and predict using the aligned distributiony, logdet = self.decoder(z, y_mask, g=g, reverse=True)outputs = {"model_outputs": z.transpose(1, 2),"logdet": logdet,"y_mean": y_mean.transpose(1, 2),"y_log_scale": y_log_scale.transpose(1, 2),"alignments": attn,"durations_log": o_dur_log.transpose(1, 2),"total_durations_log": o_attn_dur.transpose(1, 2),}return outputs@torch.no_grad()def decoder_inference(self, y, y_lengths=None, aux_input={"d_vectors": None, "speaker_ids": None}):  # pylint: disable=dangerous-default-value"""Shapes:- y: :math:`[B, T, C]`- y_lengths: :math:`B`- g: :math:`[B, C] or B`"""y = y.transpose(1, 2)y_max_length = y.size(2)g = self._speaker_embedding(aux_input)y_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(y.dtype)# decoder passz, logdet = self.decoder(y, y_mask, g=g, reverse=False)# reverse decoder and predicty, logdet = self.decoder(z, y_mask, g=g, reverse=True)outputs = {}outputs["model_outputs"] = y.transpose(1, 2)outputs["logdet"] = logdetreturn outputs@torch.no_grad()def inference(self, x, aux_input={"x_lengths": None, "d_vectors": None, "speaker_ids": None}):  # pylint: disable=dangerous-default-valuex_lengths = aux_input["x_lengths"]g = self._speaker_embedding(aux_input)# embedding passo_mean, o_log_scale, o_dur_log, x_mask = self.encoder(x, x_lengths, g=g)# compute output durationsw = (torch.exp(o_dur_log) - 1) * x_mask * self.length_scalew_ceil = torch.clamp_min(torch.ceil(w), 1)y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()y_max_length = None# compute masksy_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)# compute attention maskattn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)y_mean, y_log_scale, o_attn_dur = self.compute_outputs(attn, o_mean, o_log_scale, x_mask)z = (y_mean + torch.exp(y_log_scale) * torch.randn_like(y_mean) * self.inference_noise_scale) * y_mask# decoder passy, logdet = self.decoder(z, y_mask, g=g, reverse=True)attn = attn.squeeze(1).permute(0, 2, 1)outputs = {"model_outputs": y.transpose(1, 2),"logdet": logdet,"y_mean": y_mean.transpose(1, 2),"y_log_scale": y_log_scale.transpose(1, 2),"alignments": attn,"durations_log": o_dur_log.transpose(1, 2),"total_durations_log": o_attn_dur.transpose(1, 2),}return outputsdef train_step(self, batch: dict, criterion: nn.Module):"""A single training step. Forward pass and loss computation. Run data depended initialization for thefirst `config.data_dep_init_steps` steps.Args:batch (dict): [description]criterion (nn.Module): [description]"""text_input = batch["text_input"]text_lengths = batch["text_lengths"]mel_input = batch["mel_input"]mel_lengths = batch["mel_lengths"]d_vectors = batch["d_vectors"]speaker_ids = batch["speaker_ids"]if self.run_data_dep_init and self.training:# compute data-dependent initialization of activation norm layersself.unlock_act_norm_layers()with torch.no_grad():_ = self.forward(text_input,text_lengths,mel_input,mel_lengths,aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids},)outputs = Noneloss_dict = Noneself.lock_act_norm_layers()else:# normal training stepoutputs = self.forward(text_input,text_lengths,mel_input,mel_lengths,aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids},)with autocast(enabled=False):  # avoid mixed_precision in criterionloss_dict = criterion(outputs["z"].float(),outputs["y_mean"].float(),outputs["y_log_scale"].float(),outputs["logdet"].float(),mel_lengths,outputs["durations_log"].float(),outputs["total_durations_log"].float(),text_lengths,)return outputs, loss_dictdef _create_logs(self, batch, outputs, ap):alignments = outputs["alignments"]text_input = batch["text_input"][:1] if batch["text_input"] is not None else Nonetext_lengths = batch["text_lengths"]mel_input = batch["mel_input"]d_vectors = batch["d_vectors"][:1] if batch["d_vectors"] is not None else Nonespeaker_ids = batch["speaker_ids"][:1] if batch["speaker_ids"] is not None else None# model runs reverse flow to predict spectrogramspred_outputs = self.inference(text_input,aux_input={"x_lengths": text_lengths[:1], "d_vectors": d_vectors, "speaker_ids": speaker_ids},)model_outputs = pred_outputs["model_outputs"]pred_spec = model_outputs[0].data.cpu().numpy()gt_spec = mel_input[0].data.cpu().numpy()align_img = alignments[0].data.cpu().numpy()figures = {"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),"alignment": plot_alignment(align_img, output_fig=False),}# Sample audiotrain_audio = ap.inv_melspectrogram(pred_spec.T)return figures, {"audio": train_audio}def train_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:  # pylint: disable=no-self-usefigures, audios = self._create_logs(batch, outputs, self.ap)logger.train_figures(steps, figures)logger.train_audios(steps, audios, self.ap.sample_rate)@torch.no_grad()def eval_step(self, batch: dict, criterion: nn.Module):return self.train_step(batch, criterion)def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:figures, audios = self._create_logs(batch, outputs, self.ap)logger.eval_figures(steps, figures)logger.eval_audios(steps, audios, self.ap.sample_rate)@torch.no_grad()def test_run(self, assets: Dict) -> Tuple[Dict, Dict]:"""Generic test run for `tts` models used by `Trainer`.You can override this for a different behaviour.Returns:Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard."""print(" | > Synthesizing test sentences.")test_audios = {}test_figures = {}test_sentences = self.config.test_sentencesaux_inputs = self._get_test_aux_input()if len(test_sentences) == 0:print(" | [!] No test sentences provided.")else:for idx, sen in enumerate(test_sentences):outputs = synthesis(self,sen,self.config,"cuda" in str(next(self.parameters()).device),speaker_id=aux_inputs["speaker_id"],d_vector=aux_inputs["d_vector"],style_wav=aux_inputs["style_wav"],use_griffin_lim=True,do_trim_silence=False,)test_audios["{}-audio".format(idx)] = outputs["wav"]test_figures["{}-prediction".format(idx)] = plot_spectrogram(outputs["outputs"]["model_outputs"], self.ap, output_fig=False)test_figures["{}-alignment".format(idx)] = plot_alignment(outputs["alignments"], output_fig=False)return test_figures, test_audiosdef preprocess(self, y, y_lengths, y_max_length, attn=None):if y_max_length is not None:y_max_length = (y_max_length // self.num_squeeze) * self.num_squeezey = y[:, :, :y_max_length]if attn is not None:attn = attn[:, :, :, :y_max_length]y_lengths = torch.div(y_lengths, self.num_squeeze, rounding_mode="floor") * self.num_squeezereturn y, y_lengths, y_max_length, attndef store_inverse(self):self.decoder.store_inverse()def load_checkpoint(self, config, checkpoint_path, eval=False):  # pylint: disable=unused-argument, redefined-builtinstate = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))self.load_state_dict(state["model"])if eval:self.eval()self.store_inverse()assert not self.training@staticmethoddef get_criterion():from TTS.tts.layers.losses import GlowTTSLoss  # pylint: disable=import-outside-toplevelreturn GlowTTSLoss()def on_train_step_start(self, trainer):"""Decide on every training step wheter enable/disable data depended initialization."""self.run_data_dep_init = trainer.total_steps_done < self.data_dep_init_steps@staticmethoddef init_from_config(config: "GlowTTSConfig", samples: Union[List[List], List[Dict]] = None, verbose=True):"""Initiate model from configArgs:config (VitsConfig): Model config.samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.Defaults to None.verbose (bool): If True, print init messages. Defaults to True."""from TTS.utils.audio import AudioProcessorap = AudioProcessor.init_from_config(config, verbose)tokenizer, new_config = TTSTokenizer.init_from_config(config)speaker_manager = SpeakerManager.init_from_config(config, samples)return GlowTTS(new_config, ap, tokenizer, speaker_manager)

train.py
 

from TTS.tts.configs.shared_configs import BaseDatasetConfig
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.utils.audio import AudioProcessor
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.datasets import load_tts_samples
import os
import numpy as np
import torch
from glow_tts import GlowTTS
from trainer import Trainer, TrainerArgs
from TTS.utils.radam import RAdam
from trainer.torch import NoamLR
from TTS.tts.layers.losses import GlowTTSLossdef init_config():dataset_config = BaseDatasetConfig(path='train/LJSpeech-1.1/',meta_file_train='metadata.csv',formatter='ljspeech')config = GlowTTSConfig(batch_size=32,eval_batch_size=16,num_loader_workers=4,num_eval_loader_workers=4,run_eval=True,test_delay_epochs=-1,epochs=3,text_cleaner='phoneme_cleaners',use_phonemes=True,phoneme_language='en-us',phoneme_cache_path='train/phoneme_cache',print_step=25,print_eval=False,mixed_precision=True,output_path='train',datasets=[dataset_config],save_step=1000,data_dep_init_steps=0,)processor = AudioProcessor.init_from_config(config)tokenizer, config = TTSTokenizer.init_from_config(config)datas, _ = load_tts_samples(dataset_config,eval_split=True,eval_split_size=0.001)# 排序lens = [os.path.getsize(i['audio_file']) for i in datas]ids = np.argsort(lens)datas = [datas[i] for i in ids]return config, processor, tokenizer, datasconfig, processor, tokenizer, datas = init_config()out = processor.load_wav('train/LJSpeech-1.1/wavs/LJ001-0108.wav')
print('processor.load_wav=', out, out.shape)out = tokenizer.text_to_ids('it is obvious that legibility is the first thing to be aimed at in the forms of the letters'
)
print('tokenizer.text_to_ids=', out, len(out))out = processor.melspectrogram(processor.load_wav('train/LJSpeech-1.1/wavs/LJ001-0108.wav'))
print('processor.melspectrogram=', out.shape)len(datas), datas[:2]def init_model(from_trainer):model = GlowTTS(config, processor, tokenizer, speaker_manager=None)model.run_data_dep_init = Falseif from_trainer:trainer = Trainer(args=TrainerArgs(),config=config,output_path='train',model=model,train_samples=datas,eval_samples=None)optimizer = trainer.get_optimizer(model, config)scheduler = trainer.get_scheduler(model, config, optimizer)criterion = trainer.get_criterion(model)loader = trainer.get_train_dataloader({}, datas, verbose=True)else:optimizer = RAdam(model.parameters(),lr=1e-3,betas=[0.9, 0.998],weight_decay=1e-6)scheduler = NoamLR(optimizer, warmup_steps=4000)criterion = GlowTTSLoss()loader = model.get_data_loader(config=config,assets={},is_eval=False,samples=datas,verbose=True,num_gpus=0)return model, optimizer, scheduler, criterion, loadermodel, optimizer, scheduler, criterion, loader = init_model(from_trainer=False)# 统计参数量
print(sum(i.numel() for i in model.parameters()) / 10000)#optimizer, scheduler, criterion, loaderdef train():global modeldevice = 'cuda' if torch.cuda.is_available() else 'cpu'model.train()model = model.to(device)for epoch in range(config.epochs):for i, data in enumerate(loader):data = model.format_batch(data)for k in data.keys():if isinstance(data[k], torch.Tensor):data[k] = data[k].to(device)print("#############################################")print(data['text_input'].shape)print(data['mel_input'].shape)print("====================================================")_, loss_dict = model.train_step(data, criterion)model.zero_grad(set_to_none=True)loss_dict['loss'].backward()torch.nn.utils.clip_grad_norm_(model.parameters(), 5)optimizer.step()optimizer.zero_grad(set_to_none=True)if i % 2 == 0:lr = optimizer.state_dict()['param_groups'][0]['lr']print(epoch, i, loss_dict['loss'].item(), lr)scheduler.step()config.save_json('train/config.json')model = model.cpu()torch.save({'config': config.to_dict(),'model': model.state_dict()}, 'train/model.pth')if __name__ == '__main__':train()

其中train.py是训练TTS模型的入口,训练好的模型保存在train文件夹下

这篇关于一个轻量级的TTS模型实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074896

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J