青蛙跳台阶问题的算法以及优化问题

2024-06-18 23:58

本文主要是介绍青蛙跳台阶问题的算法以及优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法?
在遇到这种题目若是没有具体的思路之前,我们可以先列出前面几项的结果sum:
当 n = 1 时,青蛙仅有直接跳上一级台阶这种跳法,故 sum = 1;
当 n = 2 时,青蛙可以先跳 上 1 级,然后再跳 上 1 级到达2级台阶,共有2种跳法;若青蛙直接跳 2 级台阶,那么有1种跳法,从而 sum =2 + 1 = 3;
同理以上分析知道:
当 n = 3 时, sum = 5;
当 n = 4 时,sum = 8;
当 n = 5 时, sum = 13;

通过观察,我们发现其规律:
当 n = 1 时,sum = 1;
当 n = 2 时 ,sum = 2;

从 第3项起,当前项的结果sum总是等于前两项的和,即有:
f(n) = f(n -1) + f( n -2) ,n > 2;
当我们看到这个规律时,便很容易想到这是 斐波那契数列
数学函数表示如下:
在这里插入图片描述
关于斐波那契数列的求解,我们有递归方法和非递归方法的求解,下面给出具体的递归算法:
在函数 int jumb(int n)中
(1)如果 n = 1 || n =2,直接返回结果 n;
(2)如果 n > 2,则计算 返回 jumb(n -1) + jumb(n-2);
其具体代码实现为:

int jumb(int n) {if (n <= 0) {return 0;}//递归结束if (n == 1 || n == 2){return n;}//递归计算 f(n) = f( n -1 )+f( n - 2);return jumb(n -1) + jumb(n-2);
}

测试结果:

int main() {int n = 5;cout << "青蛙跳"<<n<<"阶台阶跳法种数:" << jumb(n) << endl;n = 10;cout << "青蛙跳" << n << "阶台阶跳法种数:" << jumb(n) << endl;system("pause");return 0;
}

在这里插入图片描述
下面笔者用图解来分析当 n =7 时 该递归算法的调用情况:
在这里插入图片描述
该递归算法有两个问题,一个是变量能表示的最大数值有限制,另一个是递归深度有限制,递归深度太深,计算速度特别慢,在笔者的计算机上 当 n = 50 时,笔者的电脑的散热扇狂转,CUP高速运转,等待了很久都没有得出答案。结合图示我们可以发现,在递归的过程中计算机要做很多重复的计算,比如图中计算 n = 7 时 ,f(4),f(3),f(2),f(1)的值重复计算了很多次,这样就导致了计算机要花费更多的时间和空间资源进行计算,其算法的时间复杂度为 O(n^2),空间复杂度为:O(n)。
下面我们可以对该递归算法进行改善:

int jumb(int n,int first ,int second) {if (n <= 0) {return 0;}//递归结束if (n == 1 || n == 2){return n;}if (n == 3){return first + second;}//递归计算 f(n) = f( n -1 )+f( n - 2);return jumb(n-1,second,second + first);
}

测试:

int main() {int n = 5;cout << "青蛙跳"<<n<<"阶台阶跳法种数:" << jumb(n,1,2) << endl;n = 40;cout << "青蛙跳" << n << "阶台阶跳法种数:" << jumb(n,1,2) << endl;system("pause");return 0;
}

在这里插入图片描述
可以看到其结果和之前的递归方法结果一致。当我们调用的时候,参数jumb(int n,int first ,int second) n表示跳的台阶数,first表示第1次的结果,second表示第2次的结果,分别为1和2.为了便于理解,请看图解:
在这里插入图片描述
从图解我们可以发现,其实该递归函数实际上就是使用逆向迭代的方式计算结果:
当 n = 7 时, sum = 1 + 2;
当 n = 6 时, sum = 2 + 3;
当 n = 5 时, sum = 3 +5;
当 n = 4 时, sum = 5 + 8;
当 n = 3 时, sum = 8 + 13;退出循环,返回结果 sum = 21 ;
由于该递归算法是从尾部开始递归,所以该递归算法也称为:尾递归算法,根据图示我们可以发现尾递归算法只需要计算f(7)—>f(6)----> f(5) ----> f(4) ----->f(3),每个结果只计算一次,减少了那些没必要的重复计算,从而大大提高了程序的执行效率。其算法时间复杂度为:O(n),空间复杂度为:O(n)。
我们知道理论上说,任何一个递归的算法都可以转换为一个非递归算法,结合尾递归算法的实现,我们可以设计一个非递归的算法:

int Jumb(int n) {if (n <= 0) {return 0;}if (n == 1 || n == 2){return n;}//临时变量,也就是当 n= 1时的结果int a = 1;也就是当 n= 2时的结果//临时变量int b = 2;//记录总结果int sum = 0;for (int i = 3; i <= n;i++) {//计算f(n) = f( n -1 )+f( n - 2)sum = a + b;a = b;b = sum;}return sum;
}

我们很容易发现其实该非递归算法本质上和尾递归算法的思路是一致,其时间复杂度为:O(n),空间复杂度为:O(1)。
通过以上比较,我们发下,在处理斐波那契数列的计算时,非递归算法的总体性能要高于递归算法的。
好了,本次简单的算法分析到此结束,由于个人水平有限,出错再所难免,欢迎大家指正。

这篇关于青蛙跳台阶问题的算法以及优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073432

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错