青蛙跳台阶问题的算法以及优化问题

2024-06-18 23:58

本文主要是介绍青蛙跳台阶问题的算法以及优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法?
在遇到这种题目若是没有具体的思路之前,我们可以先列出前面几项的结果sum:
当 n = 1 时,青蛙仅有直接跳上一级台阶这种跳法,故 sum = 1;
当 n = 2 时,青蛙可以先跳 上 1 级,然后再跳 上 1 级到达2级台阶,共有2种跳法;若青蛙直接跳 2 级台阶,那么有1种跳法,从而 sum =2 + 1 = 3;
同理以上分析知道:
当 n = 3 时, sum = 5;
当 n = 4 时,sum = 8;
当 n = 5 时, sum = 13;

通过观察,我们发现其规律:
当 n = 1 时,sum = 1;
当 n = 2 时 ,sum = 2;

从 第3项起,当前项的结果sum总是等于前两项的和,即有:
f(n) = f(n -1) + f( n -2) ,n > 2;
当我们看到这个规律时,便很容易想到这是 斐波那契数列
数学函数表示如下:
在这里插入图片描述
关于斐波那契数列的求解,我们有递归方法和非递归方法的求解,下面给出具体的递归算法:
在函数 int jumb(int n)中
(1)如果 n = 1 || n =2,直接返回结果 n;
(2)如果 n > 2,则计算 返回 jumb(n -1) + jumb(n-2);
其具体代码实现为:

int jumb(int n) {if (n <= 0) {return 0;}//递归结束if (n == 1 || n == 2){return n;}//递归计算 f(n) = f( n -1 )+f( n - 2);return jumb(n -1) + jumb(n-2);
}

测试结果:

int main() {int n = 5;cout << "青蛙跳"<<n<<"阶台阶跳法种数:" << jumb(n) << endl;n = 10;cout << "青蛙跳" << n << "阶台阶跳法种数:" << jumb(n) << endl;system("pause");return 0;
}

在这里插入图片描述
下面笔者用图解来分析当 n =7 时 该递归算法的调用情况:
在这里插入图片描述
该递归算法有两个问题,一个是变量能表示的最大数值有限制,另一个是递归深度有限制,递归深度太深,计算速度特别慢,在笔者的计算机上 当 n = 50 时,笔者的电脑的散热扇狂转,CUP高速运转,等待了很久都没有得出答案。结合图示我们可以发现,在递归的过程中计算机要做很多重复的计算,比如图中计算 n = 7 时 ,f(4),f(3),f(2),f(1)的值重复计算了很多次,这样就导致了计算机要花费更多的时间和空间资源进行计算,其算法的时间复杂度为 O(n^2),空间复杂度为:O(n)。
下面我们可以对该递归算法进行改善:

int jumb(int n,int first ,int second) {if (n <= 0) {return 0;}//递归结束if (n == 1 || n == 2){return n;}if (n == 3){return first + second;}//递归计算 f(n) = f( n -1 )+f( n - 2);return jumb(n-1,second,second + first);
}

测试:

int main() {int n = 5;cout << "青蛙跳"<<n<<"阶台阶跳法种数:" << jumb(n,1,2) << endl;n = 40;cout << "青蛙跳" << n << "阶台阶跳法种数:" << jumb(n,1,2) << endl;system("pause");return 0;
}

在这里插入图片描述
可以看到其结果和之前的递归方法结果一致。当我们调用的时候,参数jumb(int n,int first ,int second) n表示跳的台阶数,first表示第1次的结果,second表示第2次的结果,分别为1和2.为了便于理解,请看图解:
在这里插入图片描述
从图解我们可以发现,其实该递归函数实际上就是使用逆向迭代的方式计算结果:
当 n = 7 时, sum = 1 + 2;
当 n = 6 时, sum = 2 + 3;
当 n = 5 时, sum = 3 +5;
当 n = 4 时, sum = 5 + 8;
当 n = 3 时, sum = 8 + 13;退出循环,返回结果 sum = 21 ;
由于该递归算法是从尾部开始递归,所以该递归算法也称为:尾递归算法,根据图示我们可以发现尾递归算法只需要计算f(7)—>f(6)----> f(5) ----> f(4) ----->f(3),每个结果只计算一次,减少了那些没必要的重复计算,从而大大提高了程序的执行效率。其算法时间复杂度为:O(n),空间复杂度为:O(n)。
我们知道理论上说,任何一个递归的算法都可以转换为一个非递归算法,结合尾递归算法的实现,我们可以设计一个非递归的算法:

int Jumb(int n) {if (n <= 0) {return 0;}if (n == 1 || n == 2){return n;}//临时变量,也就是当 n= 1时的结果int a = 1;也就是当 n= 2时的结果//临时变量int b = 2;//记录总结果int sum = 0;for (int i = 3; i <= n;i++) {//计算f(n) = f( n -1 )+f( n - 2)sum = a + b;a = b;b = sum;}return sum;
}

我们很容易发现其实该非递归算法本质上和尾递归算法的思路是一致,其时间复杂度为:O(n),空间复杂度为:O(1)。
通过以上比较,我们发下,在处理斐波那契数列的计算时,非递归算法的总体性能要高于递归算法的。
好了,本次简单的算法分析到此结束,由于个人水平有限,出错再所难免,欢迎大家指正。

这篇关于青蛙跳台阶问题的算法以及优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073432

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修