prim算法和kruskal算法详解

2024-06-18 23:58
文章标签 算法 详解 prim kruskal

本文主要是介绍prim算法和kruskal算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在我们的数据结构中,当涉及到图的寻找最小的路径时,不得不提到最经典的寻找图的最小生成树的算法:
prim算法和kruskal算法详解。下面笔者将与大家共同探讨一下这两个经典的算法和他们的C++代码实现。
首先我们先看引自百度百科的prim算法的定义:普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。它的算法描述为:
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
下面开始通过一个例子来看看这个图的最小生成树的具体生成过程:在这里插入图片描述
第一步:
初始的顶点集合V={A,B,C,D,E,F,G },Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
列出图的所有的边的信息:
边-----------权值
<A,D> --------5
<C,E> --------5
<D,F> --------6
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15

第二步:
以集合V任意一个顶点为Vnew新顶点集合中的第一个顶点元素,这里哦选顶点D为第一个:
Vnew ={D }
从V中除去顶点D
V={A,B,C,E,F,G }
可知.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一),与顶点D相通的有F,B,A ,E这四个顶点,在这个四个顶点中找到与顶点D距离最近的点,
<A,D> --------5
<D,F> --------6
<D,B> --------9
<D,E> --------15
由上可知是顶点A距离顶点D的权值为5最近,则可从中选出最短的一条边<A,D>放入Enew中,则Enew={<A,D>},再将顶点A加入Vnew集合中,则
Vnew={D,A}
从V中除去顶点A
V={B,C,E,F,G }
Enew={<A,D>}
得到图:![在这里插入图片描述](https://img-blog.csdnimg.cn/20191022134130768.png
然后在顶点集合V={B,C,E,F,G }中再找到与 Vnew={D,A}中顶点最近的顶点
<D,F> --------6
<A,B> --------7
<D,B> --------9
<D,E> --------15
可知其中顶点F距离顶点D权值最小,距离最近,那么就将<D,F> --------6加入集合Enew中得到
Enew={<A,D>,<D,F>}
得到图:

再将顶点F加入Vnew中,得到
Vnew={D,A,F}
从V中除去顶点F
V={B,C,E,G }
然后在顶点集合V={B,C,E,G }中再找到与 Vnew={D,A,F}中顶点最近的顶点
<A,B> --------7
<E,F> --------8
<D,B> --------9
<F,G> --------11
<D,E> --------15
可知其中顶点B距离顶点A权值最小为6,距离最近,那么就将<A,B>加入集合Enew中得到
Enew={<A,D>,<D,F>,<A,B>}
得到图:
在这里插入图片描述
再将顶点B加入Vnew中,得到
Vnew={D,A,F,B}
从V中除去顶点B
V={C,E,G }
然后在顶点集合V={C,E,G }中再找到与 Vnew={D,A,F,B}中顶点最近的顶点
<B,E> --------7
<B,C> --------8
<E,F> --------8
<F,G> --------11
<D,E> --------15
可知其中顶点E距离顶点B权值最小为7,距离最近,那么就将<B,E>加入集合Enew中得到
Enew={<A,D>,<D,F>,<A,B>,<B,E>}
再将顶点E加入Vnew中,得到
Vnew={D,A,F,B,E}
得到图:
在这里插入图片描述
从V中除去顶点F
V={C,G }

然后在顶点集合V={C,G }中再找到与 Vnew={D,A,F,B,E}中顶点最近的顶点
<C,E> --------5
<B,C> --------8
<E,G> --------9
<F,G> --------11

可知其中顶点C距离顶点E权值最小为5,距离最近,那么就将<C,E>加入集合Enew中得到
Enew={<A,D>,<D,F>,<A,B>,<B,E>,<C,E>}
得到图:
在这里插入图片描述
再将顶点C加入Vnew中,得到
Vnew={D,A,F,B,E,C}

从V中除去顶点C
V={G }
最后从集合V={G }中再找到与 Vnew={D,A,F,B,E,C}中顶点最近的顶点
<E,G> --------9
<F,G> --------11

可知其中顶点G距离顶点E权值最小为9,距离最近,那么就将<E,G>加入集合Enew中得到
Enew={<A,D>,<D,F>,<A,B>,<B,E>,<C,E>,<E,G>}
得到图:
在这里插入图片描述
再将顶点G加入Vnew中,得到
Vnew={D,A,F,B,E,C,G}
从V中除去顶点G
V={}至此,所有的顶点都访问完毕,得到prim算法的最小生成图,其所有边为
<A,D>,<D,F>,<A,B>,<B,E>,<C,E>,<E,G>,节点的访问顺序为:
D–>A–>F–>B–>E–>C–>G
在此例中,最小生成树的权值之和为5+6+7+7+5+9 = 39。

下面我们又来看看kruskal算法的基本思路:
首先看kruskal算法的百度百科提供的基本思路:
先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。
算法实现的基本步骤:
第一步:新建图G,G中拥有原图中相同的节点,但没有边;
第二步:将原图中所有的边按权值从小到大排序;
第三步:从权值最小的边开始,如果这条边连接的两个节点于图G中不在同一个连通分量中,则添加这条边到图G中;
第四步:重复第三步,直至图G中所有的节点都在同一个连通分量中。

下面我们依旧是以上面的例子来进行对该算法的图解:

在这里插入图片描述

第一步:
构造包含所有节点的空图G:
在这里插入图片描述
第二步:
对所有的边进行从小到大的 排列:
<A,D> --------5
<C,E> --------5
<D,F> --------6
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
第三步:从所有边中选出权值最小的边加入图中,可知最小为<A,D>,<C,E>这两条边,这两条边都可以作为我们加入构造的空图中的第一条边,在这里选择 <A,D>这条边即可,得到新的图:

在这里插入图片描述

则剩下的边为:
<C,E> --------5
<D,F> --------6
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<C,E>,该边满足:这条边连接的两个节点于图G中不在同一个连通分量中,那么我们就可以将该边加入新的图得到:
在这里插入图片描述

则剩下的边为:
<D,F> --------6
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<D,F>,该边满足:这条边连接的两个节点于图G中不在同一个连通分量中,那么我们就可以将该边加入新的图得到:

在这里插入图片描述
则剩下的边为:
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<B,E>,<A,B>这两条边都满足:这条边连接的两个节点于图G中不在同一个连通分量中,那么我们就可以选择将其中一条边加入新的图得到,这里选择将<B,E> 加入新的图得到:
在这里插入图片描述

则剩下的边为:
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的<A,B>,该边满足:这条边连接的两个节点于图G中不在同一个连通分量中, 加入新的图得到:
在这里插入图片描述
则剩下的边为:
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<B,C>,<E,F> 由于这两条边的两个顶点都在同一个连通分量上,所以这两条边都不满足:这条边连接的两个节点于图G中不在同一个连通分量中,不能加入到图G中,继续下一步 :
则剩下的边为:
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<D,B>,<E,G> ,其中<D,B>两个顶点都在同一个连通分量上,不满足条件,<E,G>则满足:这条边连接的两个节点于图G中不在同一个连通分量中,所以将<E,G>加入新的图得到:
在这里插入图片描述
则剩下的边为:
<D,B> --------9
<F,G> --------11
<D,E> --------15
经过查看,发现这些边均是两个顶点都在同一个连通分量中,所以均不符合加入到新图的条件,到此,一个完整的图的最小生成树就得到了。最终的图解为:
在这里插入图片描述
到此,prim算法和kruskal算法详解的讲解已经完成,剩下就是代码的实现了。至于代码实现的讲解,将在下一个博客文章中讲解。

这篇关于prim算法和kruskal算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073429

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是