05眼动识别软件详情2波形优化-滤波

2024-06-18 12:12

本文主要是介绍05眼动识别软件详情2波形优化-滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对应视频链接点击直达

01项目点击下载,可直接运行(含数据库)

05眼动识别软件详情2

    • 对应视频链接点击直达
    • 期望的数据展示
    • 数据波形对比
    • 如何实现
      • 几种常用滤波介绍
        • 维纳滤波
        • 巴特沃斯滤波器
        • 中值滤波
        • 排序滤波
      • 推荐
    • 结语
        • 其他
        • 以下是废话

原始数据的波形,简直没法看!
这章来说说波形的优化,让数据展示明显!

期望的数据展示

请添加图片描述

数据波形对比

同类型数据,无滤波
请添加图片描述
同类型数据,有滤波
请添加图片描述
主观的说,下面的数据,人能看···

如何实现

几种常用滤波介绍

维纳滤波

信号经过系统之后,相当于进行了卷积操作,若想让其复原,只需再用系统进行反卷积即可。如果没有信号,系统却有了响应,那么这种噪声可以理解为系统的噪声。如果系统的数学形式是已知的,这种噪声就很容易滤掉,如果未知,那就需要进行估计,这就是维纳做的工作。

一个有限脉冲响应(finite impulse response, FIR),其离散形式可通过卷积表示为
在这里插入图片描述
x=sin(1.5πt(1−t)+2.1)+0.1sin(2.5πt+1)+0.18cos(7.6πt)
请添加图片描述

import numpy as np
import scipy.signal as sst = np.linspace(-1, 1, 201)
PI = 2*np.pi
x = (np.sin(PI*0.75*t*(1-t) + 2.1) +0.1*np.sin(PI*1.25*t + 1) +0.18*np.cos(PI*3.85*t))# 原始数据添加噪声
np.random.seed(42)
xn = x + np.random.rand(len(t))w = ss.wiener(xn, 9) # 维纳滤波plt.scatter(t, xn, marker='.', label="original")
plt.plot(t, w, c = 'r', label="wiener")
plt.legend()
plt.show()

wiener是signal模块中的滤波函数,其输入参数分别是待滤波数据和滤波模板,此外还有一个noise,表示系统噪声,默认为None,表示自行估计噪声。

巴特沃斯滤波器

FIR的特点是无反馈,yn 完全由xn决定,如果响应受到反馈的影响,便是无限脉冲响应(infinite impulse response, IIR),其离散形式变为
在这里插入图片描述
滤波器设计,就是对ak,bk具体形式的求解,signal模块中提供了一些函数,对这两种信号进行滤波。仍以函数x为例,在添加噪声之后,进行滤波,对于不同的滤波函数,其效果如下
在这里插入图片描述

import scipy.signal as ss
import matplotlib.pyplot as pltb, a = ss.butter(3, 0.05)
z = ss.lfilter(b, a, xn)
z2 = ss.lfilter(b, a, z)
z3 = ss.filtfilt(b, a, xn)# 下面为绘图代码
plt.plot(t, z, 'r--', label="lfilter, once")
plt.plot(t, z2, 'g--', label="lfilter, twice")
plt.plot(t, z3, 'b', label="filtfilt")
plt.scatter(t, xn, marker='.', alpha=0.75)plt.grid()
plt.legend()
plt.show()

butter函数生成3阶巴特沃斯滤波器对应的 aaa和bbb值
lfilter是最基础的脉冲响应滤波器,从左侧开始进行滤波,故而会产生相位差
filtfilt从正反两个方向滤波,可消除了lfilter产生的相位差

中值滤波

中值滤波,就是挑选出将个滤波模板范围内数据的中位数,例如[1,3,2,4]这个数组,给定一个长度为3的滤波窗口,那么元素3所在位置的滤波范围就是1,3,2,其中位数是2,所以要把3更改为2。

import numpy as np
import scipy.signal as ss
x = [1,3,2,4]
ss.medfilt(x,3) # [1, 2, 3, 2]

二维的中值滤波在图像处理中非常常见,对椒盐噪声有着非常霸道的滤除效果。所谓椒盐噪声,如下方左图所示,就是图像中随机产生的黑色和白色的斑点。在使用二维的中值滤波之后,整张图片都变得清澈了。
请添加图片描述
参考代码:

from scipy.misc import ascent
import matplotlib.pyplot as pltimg = ascent()
img = img[:256, :256]
r = np.random.rand(*img.shape)
img[r>0.96] = 255
img[r<0.04] = 0plt.subplot(121)
plt.imshow(img, cmap='gray')
plt.axis('off')plt.subplot(122)
imFilt = ss.medfilt2d(img, [3,3])
plt.imshow(imFilt, cmap='gray')
plt.axis('off')plt.show()
排序滤波

排序滤波是中值滤波概念的扩充,和中值滤波的区别是,在对滤波窗口中的数据进行排序之后,可以指定用以替代当前数据的数值序号。下面四个矩阵,展示了以3×3单位矩阵为滤波模板,排序滤波在不同排序参数下的结果。
请添加图片描述
此滤波过程在scipy中的实现方式如下:

x = np.arange(25).reshape(5, 5).astype(float)
I = np.identity(3)mats = {"original":x}
for i in range(3):mats[f"order_filter:{i}"] = ss.order_filter(x, I, i)

order_filter】即为signal模块提供的排序滤波函数,以输入参数(x, I, i)为例,表示从矩阵x中选出单位阵I所覆盖区域中第i小的元素。I是一个单位阵,就实际情况来看,其覆盖的第一个子阵中,以0为中心,则只能覆盖到2x2的范围,对角元素0,6,最小值是0,最大值是6。如以6为中心,则可以完全覆盖3x3的内容,最小值为0,最大值为12。
绘图代码如下:

def drawMat(x, ax=None):M, N = x.shapeif not ax:ax = plt.subplot()arrM, arrN = np.arange(M), np.arange(N)plt.yticks(arrM+0.5, arrM)plt.xticks(arrN+0.5, arrN)ax.pcolormesh(x)ax.invert_yaxis()for i,j in product(range(M),range(N)):ax.text(j+0.2, i+0.6, f"{x[i,j]}")for i,key in enumerate(mats,1):ax = plt.subplot(2,2,i)drawMat(mats[key], ax)plt.title(key)plt.show()

推荐

我这边推荐使用FIR或者IIR
我这边的代码如下:

import numpy as npdef baseline_correction(eog_signal, sampling_rate):# 计算信号的时间数组nm = int(len(eog_signal) / 4)eog_signal1 = eog_signalbaseline_corrected = []for i in range(4):eog_signal = eog_signal1[i * nm:(i + 1) * nm]time = np.arange(len(eog_signal)) / sampling_rate  # 算出这个数据的时间 并生成数组# 使用线性回归估计基线趋势coefficients = np.polyfit(time, eog_signal, 1)# 生成基线趋势baseline_trend = coefficients[0] * time + coefficients[1]# 从原始信号中减去基线趋势以进行校正baseline_corrected1 = eog_signal - baseline_trendbaseline_corrected.extend(baseline_corrected1)return baseline_corrected# 将数据转换为numpy数组fs = 256  # 举例:1000Hz# 设计FIR滤波器fir_freq = np.array([0.1, 45]) / (fs / 2)  # 将8-13Hz转换为归一化频率# 线性回归极限矫正以后的数据data_baseline = baseline_correction(eye_data, fs)应用FIR滤波器1fir_coeff = signal.firwin(numtaps=7, cutoff=fir_freq, pass_zero=False)  # 阶数指的是 numtaps - 1fir_filtered_data = signal.lfilter(fir_coeff, 1, data_baseline)  # 无反馈 滤波器 第二组系数全是1 输出只与当前和过去输入有关,与过去输出无关# 应用IIR滤波器2iir_coeff = signal.iirfilter(N=5, Wn=fir_freq, btype='band', ftype='butter')fir_filtered_data = signal.lfilter(iir_coeff[0], iir_coeff[1], data_baseline)

结语

其他

以上仅作参考,欢迎一起讨论!

V:justwaityou1314
懂的都懂
以下是废话

别的也没啥说的 , 如果觉得可以 , 希望一键三连支持一下我的B站作品

欢迎各位大佬留言吐槽,也可以深入科学探讨

这篇关于05眼动识别软件详情2波形优化-滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071987

相关文章

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别

转发来源:https://swift.ctolib.com/ooooverflow-chinese-ocr.html chinese-ocr 基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别 环境部署 sh setup.sh 使用环境: python 3.6 + tensorflow 1.10 +pytorch 0.4.1 注:CPU环境

电子盖章怎么做_电子盖章软件

使用e-章宝(易友EU3000智能盖章软件)进行电子盖章的步骤如下: 一、准备阶段 软件获取: 访问e-章宝(易友EU3000智能盖章软件)的官方网站或相关渠道,下载并安装软件。账户注册与登录: 首次使用需注册账户,并根据指引完成注册流程。注册完成后,使用用户名和密码登录软件。 二、电子盖章操作 文档导入: 在e-章宝软件中,点击“添加”按钮,导入待盖章的PDF文件。支持批量导入多个文件,

百度OCR识别结构结构化处理视频

https://edu.csdn.net/course/detail/10506

Pycharm配置conda环境(解决新版本无法识别可执行文件问题)

引言: 很多小伙伴在下载最新版本的pycharm或者更新到最新版本后为项目配置conda环境的时候,发现文件夹目录中无法显示可执行文件(一般为python.exe),以下就是本人遇到该问题后试验和解决该问题的一些方法和思路。 一般遇到该问题的人群有两种,一种是刚入门对pycharm进行conda环境配置的小白(例如我),不熟悉相关环境配置的操作和过程,还有一种是入坑pycharm有段时间的老手

服务器雪崩的应对策略之----SQL优化

SQL语句的优化是数据库性能优化的重要方面,特别是在处理大规模数据或高频访问时。作为一个C++程序员,理解SQL优化不仅有助于编写高效的数据库操作代码,还能增强对系统性能瓶颈的整体把握。以下是详细的SQL语句优化技巧和策略: SQL优化 1. 选择合适的数据类型2. 使用索引3. 优化查询4. 范式化和反范式化5. 查询重写6. 使用缓存7. 优化数据库设计8. 分析和监控9. 调整配置1、

Java中如何优化数据库查询性能?

Java中如何优化数据库查询性能? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨在Java中如何优化数据库查询性能,这是提升应用程序响应速度和用户体验的关键技术。 优化数据库查询性能的重要性 在现代应用开发中,数据库查询是最常见的操作之一。随着数据量的增加和业务复杂度的提升,数据库查询的性能优化显得尤为重

小红书商家电话采集软件使用指南

使用小红书商家电话采集软件可以提高商家电话的采集效率,以下是使用指南及附带代码。 步骤一:安装Python和相关库 首先,确保你的电脑已经安装了Python运行环境(建议安装Python3版本)。安装完成后,同样需要安装一些相关的库,如requests、beautifulsoup4等。在命令行窗口中输入以下命令进行安装: pip install requestspip install bea

神经网络第四篇:推理处理之手写数字识别

到目前为止,我们已经介绍完了神经网络的基本结构,现在用一个图像识别示例对前面的知识作整体的总结。本专题知识点如下: MNIST数据集图像数据转图像神经网络的推理处理批处理  MNIST数据集          mnist数据图像 MNIST数据集由0到9的数字图像构成。像素取值在0到255之间。每个图像数据都相应地标有“7”、“2”、“1”等数字标签。MNIST数据集中,