Python机器学习分类算法(一)-- 朴素贝叶斯分类(Naive Bayes Classifier)

本文主要是介绍Python机器学习分类算法(一)-- 朴素贝叶斯分类(Naive Bayes Classifier),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简要描述

        朴素贝叶斯分类器(Naive Bayes Classifier)是一种基于贝叶斯定理与特征条件独立假设的分类方法。它之所以被称为“朴素”,是因为它假设输入特征(在特征向量中)是独立的,即一个特征的出现不依赖于其他特征的出现。这个假设在实际应用中通常不成立,但在很多情况下,朴素贝叶斯分类器仍然可以取得很好的效果。

工作原理

贝叶斯定理

        给定一个类别 (y) 和一个特征向量 (x_1, x_2, ..., x_n),贝叶斯定理表示条件概率 (P(y|x_1, x_2, ..., x_n)) 可以通过以下方式计算:

                [ P(y|x_1, x_2, ..., x_n) = \frac{P(y)P(x_1, x_2, ..., x_n|y)}{P(x_1, x_2, ..., x_n)} ]

其中:

  • (P(y)) 是类别 (y) 的先验概率。
  • (P(x_1, x_2, ..., x_n|y)) 是给定类别 (y) 下特征向量 (x_1, x_2, ..., x_n) 的条件概率。
  • (P(x_1, x_2, ..., x_n)) 是特征向量的先验概率,通常被视为常数,因为给定数据集中的样本都已经被观测到。

朴素贝叶斯的假设

        朴素贝叶斯假设特征之间是条件独立的,即:

                   [ P(x_1, x_2, ..., x_n|y) = P(x_1|y)P(x_2|y) \cdots P(x_n|y) ]

        这个假设大大简化了计算,因为我们可以单独计算每个特征的条件概率,而不需要考虑特征之间的组合。

分类

        对于一个新的样本,朴素贝叶斯分类器会计算它属于每个类别的后验概率 (P(y|x_1, x_2, ..., x_n)),然后选择后验概率最大的类别作为预测类别。

使用场景及优缺点

适用情形

  • 文本分类,如垃圾邮件过滤、情感分析。
  • 适用于特征间相关性较小的情况。

优点

  • 所需估计的参数少,只需计算每个特征在每个类别下的概率。
  • 对缺失数据不敏感,因为它仅使用出现的特征进行预测。
  • 计算速度快,因为假设特征独立,可以简化计算。

缺点

  • 假设特征间相互独立,这在现实中往往不成立,可能导致分类效果下降。
  • 对于特征间存在较强相关性的数据集,分类效果可能不佳。

代码示例

        这里以鸢尾花数据集为例,直接使用Python的scikit-learn库,简单的代码如下,如果要使用此方法,可以自行调整参数:

from sklearn.naive_bayes import GaussianNB  
from sklearn.model_selection import train_test_split  
from sklearn.datasets import load_iris  # 加载数据  
iris = load_iris()  
X, y = iris.data, iris.target  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 创建模型  
gnb = GaussianNB()  # 训练模型  
gnb.fit(X_train, y_train)  # 预测  
y_pred = gnb.predict(X_test)

 

 

这篇关于Python机器学习分类算法(一)-- 朴素贝叶斯分类(Naive Bayes Classifier)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071973

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个