每日一题——8行Python代码实现PAT乙级1029 旧键盘(举一反三+思想解读+逐步优化)五千字好文

本文主要是介绍每日一题——8行Python代码实现PAT乙级1029 旧键盘(举一反三+思想解读+逐步优化)五千字好文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


一个认为一切根源都是“自己不够强”的INTJ

个人主页:用哲学编程-CSDN博客
专栏:每日一题——举一反三
Python编程学习
Python内置函数

Python-3.12.0文档解读

目录

我的写法

代码评析

时间复杂度

空间复杂度

我要更强

方法一:使用集合来存储不正确的字符

方法二:使用列表来存储错误按键

方法三:使用布尔数组来存储不正确的字符

哲学和编程思想

方法一:使用集合来存储不正确的字符

方法二:使用列表来存储错误按键

方法三:使用布尔数组来存储不正确的字符

总结

举一反三

1. 空间换时间

2. 集合论和数据结构选择

3. 算法复杂度分析

4. 简单性和可读性

5. 测试和调试

6. 学习和实践


题目链接

我的写法

# 读取用户输入的字符串,并将其转换为大写
corrects = input().upper()# 创建一个集合,用于存储错误的按键
bad_keys = set()# 再次读取用户输入的字符串,并将其转换为大写
incorrects = input().upper()# 遍历正确字符串的每个字符
for i in range(len(corrects)):# 检查当前字符是否存在于不正确的字符串中if incorrects.find(corrects[i]) == -1:# 如果当前字符不在不正确的字符串中,并且它还没有被添加到错误的按键集合中if corrects[i] not in bad_keys:# 将该字符添加到错误的按键集合中bad_keys.add(corrects[i])# 打印出该字符,使用end=''确保字符在同一行输出print(corrects[i], end='')

这段代码实现了一个比较简单的功能,即在两个输入字符串中找出那些在第一个字符串中出现但在第二个字符串中没有出现的字符,并且输出这些字符。下面是对这段代码的详细评析,包括时间复杂度和空间复杂度分析。

代码评析

  1. 代码逻辑清晰:代码的逻辑比较直接,通过两次读取输入来获取两个字符串,然后依次检查第一个字符串中的每个字符是否存在于第二个字符串中。这种方法直观且容易理解。
  2. 使用集合提高查找效率:利用集合 bad_keys 来存储已经发现的并输出过的错误字符。这是一个不错的设计,因为集合具有较高的查找效率(O(1) 平均时间复杂度)。
  3. 字符串查找操作:在 incorrects.find(corrects[i]) 中,字符串的 find 方法在最坏情况下的时间复杂度是 O(n),其中 n 是字符串 incorrects 的长度。由于这是在一个循环内进行的(循环次数为 len(corrects)),因此在最坏情况下,这部分代码的时间复杂度是 O(m * n),其中 m 是字符串 corrects 的长度,n 是字符串 incorrects 的长度。

时间复杂度

  • 读取输入:这部分时间复杂度可以忽略不计,因为它依赖于用户输入的速度。
  • 遍历 corrects 字符串:这个循环的时间复杂度是 O(m),其中 m 是 corrects 字符串的长度。
  • 查找字符是否存在于 incorrects 中:使用 find 方法,最坏情况下时间复杂度是 O(n),其中 n 是 incorrects 字符串的长度。这一步在循环内执行,因此总的时间复杂度是 O(m * n)。
  • 集合操作:在最坏情况下,集合的添加和查找操作的时间复杂度是 O(1)。

总结起来,这段代码的整体时间复杂度是 O(m * n),其中 m 是 corrects 字符串的长度,n 是 incorrects 字符串的长度。

空间复杂度

  • 字符串存储:两个输入字符串 corrects 和 incorrects 占用的空间是 O(m + n)。
  • 集合 bad_keys:最坏情况下,集合 bad_keys 中可能包含所有正确字符串中的字符,因此占用的空间是 O(m)。

总结起来,这段代码的空间复杂度是 O(m + n),其中 m 是 corrects 字符串的长度,n 是 incorrects 字符串的长度。


我要更强

当然,有几种优化代码的方式可以同时提高时间复杂度和空间复杂度。我会提供几个方案,并给出完整的代码和注释。

方法一:使用集合来存储不正确的字符

优化思路: 通过将 incorrects 转换为集合,可以利用集合的查找效率(O(1)),从而优化时间复杂度。

代码:

# 读取用户输入的字符串,并将其转换为大写
corrects = input().upper()# 创建一个集合,用于存储不正确的字符
incorrects = set(input().upper())# 创建一个集合,用于存储已经检测到的错误按键
bad_keys = set()# 遍历正确字符串的每个字符
for char in corrects:# 检查当前字符是否存在于不正确的字符集合中if char not in incorrects:# 如果当前字符不在不正确的字符集合中,并且它还没有被添加到错误按键集合中if char not in bad_keys:# 将该字符添加到错误按键集合中bad_keys.add(char)# 打印出该字符,使用end=''确保字符在同一行输出print(char, end='')

时间复杂度:O(m)

  • 遍历 corrects 字符串的时间复杂度是 O(m)。
  • 在 incorrects 集合中查找字符的时间复杂度是 O(1)。

空间复杂度:O(m + n)

  • 存储 corrects 和 incorrects 共占用 O(m + n) 的空间。
  • 存储 bad_keys 的空间是 O(k),其中 k 是错误按键的数量,最坏情况下 k = m。

方法二:使用列表来存储错误按键

优化思路: 列表的空间效率高于集合,如果错误按键数量较少,这种方法可以节省一些空间。

代码:

# 读取用户输入的字符串,并将其转换为大写
corrects = input().upper()# 创建一个集合,用于存储不正确的字符
incorrects = set(input().upper())# 创建一个列表,用于存储已经检测到的错误按键
bad_keys = []# 遍历正确字符串的每个字符
for char in corrects:# 检查当前字符是否存在于不正确的字符集合中if char not in incorrects:# 如果当前字符不在不正确的字符集合中,并且它还没有被添加到错误按键列表中if char not in bad_keys:# 将该字符添加到错误按键列表中bad_keys.append(char)# 打印出该字符,使用end=''确保字符在同一行输出print(char, end='')

时间复杂度:O(m)

  • 遍历 corrects 字符串的时间复杂度是 O(m)。
  • 在 incorrects 集合中查找字符的时间复杂度是 O(1)。
  • 在列表 bad_keys 中查找字符的时间复杂度是 O(k),最坏情况下 k = m。

空间复杂度:O(m + n)

  • 存储 corrects 和 incorrects 共占用 O(m + n) 的空间。
  • 存储 bad_keys 的空间是 O(k),其中 k 是错误按键的数量。

方法三:使用布尔数组来存储不正确的字符

优化思路: 如果字符集的范围有限(如仅字母A-Z),可以使用固定大小的布尔数组替代集合,这样可以进一步优化空间和查找效率。

代码:

# 读取用户输入的字符串,并将其转换为大写
corrects = input().upper()# 创建一个布尔数组,用于标记不正确的字符
incorrects = [False] * 26# 填充不正确的字符布尔数组
for char in input().upper():incorrects[ord(char) - ord('A')] = True# 创建一个集合,用于存储已经检测到的错误按键
bad_keys = set()# 遍历正确字符串的每个字符
for char in corrects:# 检查当前字符是否存在于不正确的字符布尔数组中if not incorrects[ord(char) - ord('A')]:# 如果当前字符不在不正确的字符布尔数组中,并且它还没有被添加到错误按键集合中if char not in bad_keys:# 将该字符添加到错误按键集合中bad_keys.add(char)# 打印出该字符,使用end=''确保字符在同一行输出print(char, end='')

时间复杂度:O(m)

  • 遍历 corrects 字符串的时间复杂度是 O(m)。
  • 在布尔数组中查找字符的时间复杂度是 O(1)。

空间复杂度:O(m + 26)

  • 存储 corrects 需要 O(m) 的空间,布尔数组固定为 26 个元素。
  • 存储 bad_keys 的空间是 O(k),其中 k 是错误按键的数量,最坏情况下 k = m。

通过这几种方法,可以有效地优化代码的时间复杂度和空间复杂度,具体选择哪种方法可以根据问题的具体场景和输入数据的特点来决定。


哲学和编程思想

这些方法背后应用了一些重要的编程哲学和思想,如空间换时间、集合论、算法复杂度分析和数据结构选择。下面具体说明这些方法中使用的编程哲学和思想:

方法一:使用集合来存储不正确的字符

编程思想:

  1. 空间换时间:
    • 通过使用集合来存储不正确的字符,牺牲了一部分空间来换取查找操作的高效性(O(1))。这是一个典型的“空间换时间”的策略,用更多的存储空间来减少时间复杂度。
  2. 集合论:
    • 集合的数据结构利用哈希表实现了元素的快速查找、添加和删除操作。这种高效的集合操作源于集合论中的基本概念。
  3. 数据结构选择:
  • 针对查找频繁且不需要保持顺序的情况,选择集合这种数据结构是非常合适的。集合能快速判断某个元素是否存在,非常适用于这类问题。

方法二:使用列表来存储错误按键

编程思想:

  1. 简单性和可读性:
    • 使用列表来存储已经检测到的错误按键,这种方法更简单和直观。但在最坏情况下会影响性能(在列表中的查找操作是O(k))。
  2. 时间复杂度分析:
  • 充分理解算法的时间复杂度,通过对算法的时间复杂度进行分析,决定使用合适的数据结构。例如,在这里为了简化代码,选择列表,但要注意最坏情况下的性能影响。

方法三:使用布尔数组来存储不正确的字符

编程思想:

  1. 空间换时间:
    • 这一方法再一次利用了“空间换时间”的哲学,通过一个固定大小的布尔数组,用更大的空间来换取查找操作的高效性(O(1))。
  2. 数组的使用:
    • 在字符集范围有限的情况下,使用数组(布尔数组)来优化性能。这是通过对问题的特性进行分析后做出的数据结构选择。
  3. 算法复杂度分析:
  • 充分理解和分析算法的时间和空间复杂度,针对问题的特点选择最优的数据结构和算法。布尔数组在字符集范围有限的情况下,可以极大地提高查找操作的效率。

总结

这些方法背后都体现了一些关键的编程哲学和思想:

  1. 空间换时间:
    • 通过增加空间使用来换取更快的时间效率,这是高效算法设计中的常见策略。
  2. 集合论和数据结构选择:
    • 根据具体需求选择合适的数据结构(如集合、列表、数组等),利用其特性来优化算法。集合适合频繁查找操作,数组适合空间固定且范围有限的情况。
  3. 算法复杂度分析:
    • 对时间复杂度和空间复杂度进行分析,选择最优的算法和数据结构。在设计和优化算法时,这种分析是至关重要的。
  4. 简单性和可读性:
  • 在保证效率的前提下,代码的简单性和可读性也是重要的考虑因素。简单易懂的代码更容易维护和调试。

这些编程哲学和思想不仅仅适用于这三个方法,对于很多算法和数据结构的设计与优化都具有指导意义。


举一反三

根据上述提到的编程哲学和思想,以下是一些技巧和策略,可以帮助在面对不同编程问题时举一反三:

1. 空间换时间

  • 缓存:对于计算量大的函数或方法,使用缓存(如字典或集合)存储已经计算过的结果,避免重复计算。
  • 预处理:对于需要频繁查询的数据,可以预先处理数据,如排序、建立索引等,以加快后续的查询速度。

2. 集合论和数据结构选择

  • 选择合适的数据结构:根据操作的类型和频率选择最合适的数据结构。例如,如果需要频繁查找元素,使用集合或字典;如果需要保持元素的插入顺序,使用列表或链表。
  • 利用数据结构特性:了解不同数据结构的特性,如栈的“后进先出”,队列的“先进先出”,以及树和图的遍历方式,可以帮助设计更高效的算法。

3. 算法复杂度分析

  • 时间复杂度分析:在编写代码前,先分析算法的时间复杂度,确保算法在可接受的时间范围内运行。
  • 空间复杂度分析:同样地,分析算法的空间复杂度,确保不会因为内存使用过多而导致程序崩溃或效率低下。
  • 优化算法:通过减少循环嵌套、避免不必要的计算等方法来优化算法的时间复杂度。

4. 简单性和可读性

  • 代码重构:定期重构代码,使其更加简洁、清晰,易于理解和维护。
  • 使用有意义的变量和函数名:使用描述性的变量名和函数名,使代码自文档化,减少注释的需求。
  • 模块化编程:将代码分解为小的、独立的模块或函数,每个模块负责一个明确的功能,便于管理和复用。

5. 测试和调试

  • 单元测试:为代码编写单元测试,确保每个模块的功能正确。
  • 调试技巧:学会使用调试工具,如断点、单步执行等,快速定位和修复错误。

6. 学习和实践

  • 持续学习:不断学习新的编程语言、框架和工具,保持技术更新。
  • 实践:通过实际项目或编程练习来应用所学知识,实践是提高编程能力的最佳方式。

通过掌握这些技巧和策略,将能够更加灵活地应对各种编程挑战,提高解决问题的效率和质量。记住,编程不仅仅是写代码,更是一种解决问题的思维方式。通过不断学习和实践,你将能够更好地理解和应用这些编程哲学和思想。


这篇关于每日一题——8行Python代码实现PAT乙级1029 旧键盘(举一反三+思想解读+逐步优化)五千字好文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071960

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的