线性代数|机器学习-P15矩阵A的低秩变换下的逆矩阵

2024-06-18 07:44

本文主要是介绍线性代数|机器学习-P15矩阵A的低秩变换下的逆矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

1. 单位矩阵的秩1变换

1.1 功能说明

假设我们有一个单位矩阵I,列向量u,v那么当我们对单位向量I减去秩为1的矩阵后,其逆等于多少?
M = I − u v T , M − 1 = I + u v T 1 − v T u \begin{equation} M=I-uv^T,M^{-1}=I+\frac{uv^T}{1-v^Tu} \end{equation} M=IuvT,M1=I+1vTuuvT

  • 我们发现,对于单位矩阵进行秩为1的扰动 u v T uv^T uvT,其逆也是进行秩为1的扰动 u v T 1 − v T u \frac{uv^T}{1-v^Tu} 1vTuuvT,这个公式的好处在于,当我们知道对I的秩为1的扰动,就能通过公式直接知道其逆的扰动,真神奇!

1.2 证明

M = I − u v T ⇒ M − 1 = I + u v T 1 − v T u \begin{equation} M=I-uv^T\Rightarrow M^{-1}=I+\frac{uv^T}{1-v^Tu}\end{equation} M=IuvTM1=I+1vTuuvT

  • 定义矩阵E表示如下:
    E = [ I u v T 1 ] , D e t [ E ] = 1 − v T u (3) E=\begin{bmatrix}I&&u\\\\v^T&&1\end{bmatrix},Det[E]=1-v^Tu\tag{3} E= IvTu1 ,Det[E]=1vTu(3)
    我们想求 E − 1 E^{-1} E1,可以通过增广矩阵,进行行变换得到,
  • 第一种方法是:将第一行乘以 v T v^T vT后加到第二行中.
    [ I 0 − v T 1 ] E = [ I u 0 D ] (4) \begin{bmatrix}I&&0\\\\-v^T&&1\end{bmatrix}E=\begin{bmatrix}I&&u\\\\0&&D\end{bmatrix}\tag{4} IvT01 E= I0uD (4)
    E − 1 = [ I u 0 D ] − 1 [ I 0 − v T 1 ] = [ I + u D − 1 v T − u D − 1 − D − 1 v T D − 1 ] (5) E^{-1}=\begin{bmatrix}I&&u\\\\0&&D\end{bmatrix}^{-1}\begin{bmatrix}I&&0\\\\-v^T&&1\end{bmatrix}=\begin{bmatrix}I+uD^{-1}v^T&&-uD^{-1}\\\\-D^{-1}v^T&&D^{-1}\end{bmatrix}\tag{5} E1= I0uD 1 IvT01 = I+uD1vTD1vTuD1D1 (5)
  • 第二种方法是:将第二行乘以 u u u后加到第一行中.
    [ I − u 0 1 ] E = [ I − u v T 0 v T 1 ] (6) \begin{bmatrix}I&&-u\\\\0&&1\end{bmatrix}E=\begin{bmatrix}I-uv^T&&0\\\\v^T&&1\end{bmatrix}\tag{6} I0u1 E= IuvTvT01 (6)
    E − 1 = [ I − u v T 0 v T 1 ] − 1 [ I − u 0 1 ] = [ M − 1 − M − 1 u − v T M − 1 1 + v T M − 1 u ] (7) E^{-1}=\begin{bmatrix}I-uv^T&&0\\\\v^T&&1\end{bmatrix}^{-1}\begin{bmatrix}I&&-u\\\\0&&1\end{bmatrix}=\begin{bmatrix}M^{-1}&&-M^{-1}u\\\\-v^TM^{-1}&&1+v^TM^{-1}u\end{bmatrix}\tag{7} E1= IuvTvT01 1 I0u1 = M1vTM1M1u1+vTM1u (7)
  • 由公式4,6 可得,两个 E − 1 E^{-1} E1相等, M = I − u v T M=I-uv^T M=IuvT
    [ I + u D − 1 v T − u D − 1 − D − 1 v T D − 1 ] = [ M − 1 − M − 1 u − v T M − 1 1 + v T M − 1 u ] (8) \begin{bmatrix}I+uD^{-1}v^T&&-uD^{-1}\\\\-D^{-1}v^T&&D^{-1}\end{bmatrix}=\begin{bmatrix}M^{-1}&&-M^{-1}u\\\\-v^TM^{-1}&&1+v^TM^{-1}u\end{bmatrix}\tag{8} I+uD1vTD1vTuD1D1 = M1vTM1M1u1+vTM1u (8)
  • 由第一个行,第一列可得如下
    M − 1 = I + u D − 1 v T = I + u v T 1 − v T u (9) M^{-1}=I+uD^{-1}v^T=I+\frac{uv^T}{1-v^Tu}\tag{9} M1=I+uD1vT=I+1vTuuvT(9)
  • 结论:
    M = I − u v T ⇒ M − 1 = I + u v T 1 − v T u (10) M=I-uv^T\Rightarrow M^{-1}=I+\frac{uv^T}{1-v^Tu}\tag{10} M=IuvTM1=I+1vTuuvT(10)

2. 单位矩阵 I n I_n In的秩k变换

  • 定义 M 表示如下:
    M = I − U V T → M − 1 = I n + U ( I k − V T U ) − 1 V T \begin{equation} M=I-UV^T\rightarrow M^{-1}=I_n+U(I_k-V^TU)^{-1}V^T \end{equation} M=IUVTM1=In+U(IkVTU)1VT
  • 同理构造矩阵E
    E = [ I n U V T I k ] , d e t ( E ) = d e t ( I n − U V T ) \begin{equation} E=\begin{bmatrix}I_n&U\\\\V^T&I_k\end{bmatrix},det(E)=det(I_n-UV^T) \end{equation} E= InVTUIk ,det(E)=det(InUVT)

3. 一般矩阵A的秩k变换

  • Sherman-Morrison-Woodbury formula
  • 定义 M 表示如下:
    M = A − U V T \begin{equation} M=A-UV^T \end{equation} M=AUVT
    - M − 1 = A − 1 + A − 1 U ( I − V T A − 1 U ) − 1 V T A − 1 \begin{equation} M^{-1}=A^{-1}+A^{-1}U(I-V^TA^{-1}U)^{-1}V^TA^{-1} \end{equation} M1=A1+A1U(IVTA1U)1VTA1
  • 同理构造矩阵E
    E = [ A U V T I ] , d e t ( E ) = d e t ( A − U V T ) \begin{equation} E=\begin{bmatrix}A&U\\\\V^T&I\end{bmatrix},det(E)=det(A-UV^T) \end{equation} E= AVTUI ,det(E)=det(AUVT)

这篇关于线性代数|机器学习-P15矩阵A的低秩变换下的逆矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071689

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个