智能优化算法:寄生-捕食算法-附代码

2024-06-18 07:18

本文主要是介绍智能优化算法:寄生-捕食算法-附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:寄生-捕食算法

文章目录

  • 智能优化算法:寄生-捕食算法
    • 1.算法原理
      • 1.1 种群初始化
      • 1.2 筑巢阶段(鸟窝)
      • 1.3 寄生阶段(crow-cuckoo)
      • 1.4 捕食阶段(crow-cat)
    • 2.实验结果
    • 3.参考文献
    • 4.Matlab代码

摘要:寄生-捕食(Parasitism – Predation algorithm,PPA)算法是于2019年提出的,它模仿捕食者猫,布谷鸟和乌鸦之间的寄生与捕食行为,形成乌鸦-布谷鸟-猫寄生与捕食系统。该算法具有精度高,收敛速度块等特点。

1.算法原理

1.1 种群初始化

种群初始化与其他优化算法一样,在边界范围内随机初始化:
X i N e w = X i m i n + r a n d ∗ ( X i m a x − X i m i n ) (1) X_i^{New}=X_i^{min}+rand*(X_i^{max}-X_i^{min})\tag{1} XiNew=Ximin+rand(XimaxXimin)(1)

1.2 筑巢阶段(鸟窝)

初始化后,将进入筑巢期、寄生期和捕食期。一开始,乌鸦的数量会随着时间的推移而减少。嵌套阶段被评估为模拟乌鸦通过两个状态飞行。第一个状态是通过生成随机的候选乌鸦,为乌鸦 i i i​生成一个新的位置见式(2)。
X i t + 1 = X i t + L F ∗ ( X r 1 − X i t ) , i ∈ n c r o w (2) X_i^{t+1}=X_i^t+LF*(X_{r1}-X_i^t),i\in n_{crow}\tag{2} Xit+1=Xit+LF(Xr1Xit),incrow(2)
其中: r 1 r1 r1为随机数, L F LF LF为莱维飞行函数,可参见布谷鸟算法。

在筑巢阶段,利用目前最优的一组鸟巢进行更新,通过Levy飞行过程发现鸟巢解决方案。许多物种都观察到了莱维飞行,这是一种随机行走。列维飞行的步长由重尾概率分布控制通常称为Lévy分布。Lévy飞行在探索搜索空间方面优于均匀随机分布,因此用它代替均匀随机运动来模拟局部最优陷入、过早收敛的回避行为,提高了整体搜索空间的探索能力。超出维度范围的种群初始化状态按照式(3)进行。
X i , o u t n e w = X i , o u t m i n + r a n d ∗ ( X i , o u t m a x − X i , o u t m i n ) (3) X_{i,out}^{new}=X_{i,out}^{min}+rand*(X_{i,out}^{max}-X_{i,out}^{min})\tag{3} Xi,outnew=Xi,outmin+rand(Xi,outmaxXi,outmin)(3)
重新初始化“呈现种群的随机变化,以获得增强的探索和增加搜索空间[48]的多样性。”这一阶段被设计为一个纯粹的探索阶段,其中Levy飞行在第一个状态中使用,提供了在整个搜索空间中分散乌鸦的高能力。

1.3 寄生阶段(crow-cuckoo)

一开始,当捕食效率低时,猫会将布谷鸟赶尽杀出。捕食效率高,导致布谷鸟灭绝。布谷鸟的效率被假定为小/中等,而猫的效率则降低了。在此阶段,将部分乌鸦卵(宿主)替换为布谷鸟卵,布谷鸟卵与乌鸦卵相似,被发现的可能性较小。此外,根据适合度选择被寄生的巢,巢越好,被寄生的几率越大。构建新的解决方案/巢穴来取代一些巢穴,并以概率pa发现一小部分较差的巢穴。布谷鸟的新巢可以得到:
X i , n e w c u c k o o = X i , o l d c u c k o o + S G ∗ k (4) X_{i,new}^{cuckoo}=X_{i,old}^{cuckoo}+S_G*k\tag{4} Xi,newcuckoo=Xi,oldcuckoo+SGk(4)

S G = ( X r 2 − X r 3 ) ∗ r a n d (5) S_G=(X_{r2}-X_{r3})*rand \tag{5} SG=(Xr2Xr3)rand(5)

其中 X i , n e w c u c k o o X_{i,new}^{cuckoo} Xi,newcuckoo​采用轮盘选择,选择鸟巢位置, S G SG SG服从均匀高斯分布, k k k​定义为二进制矩阵,计算如下:
k = r a n d [ 0 , 1 ] > P a (6) k=rand[0,1]>Pa\tag{6} k=rand[0,1]>Pa(6)
其中: P a Pa Pa t / 2 T t/2T t/2T g / 2 G g/2G g/2G给出的递增因子,其中 t 或 g t或g tg为当前迭代次数, T T T G G G为最大迭代次数。利用二进位矩阵 k k k​尽可能地保留相当一部分旧布谷鸟,保持探索搜索空间。在寄生阶段开始时,矩阵 k k k被1填充。然后, k k k​逐渐增加,以保持种群多样性。

1.4 捕食阶段(crow-cat)

一开始,捕食效率高,导致猫、乌鸦数量爆发性增长,数量减少,无法为布谷鸟提供足够的生存资源,导致布谷鸟灭绝。此阶段基于猫的跟踪模式,可以是乌鸦-猫阶段。不需要执行搜索模式,因为猫知道搜索空间是空的,不需要搜索。在这个阶段,布谷鸟雏鸟发现了驱赶猫的令人厌恶的化合物。猫以低臭味分泌物追踪布谷鸟不在的巢,选择未寄生的巢,随机追踪模式。猫是根据自己的速度移动的每一个维度,一旦他们开始追踪猎物。猫的捕食效率高,导致猫的爆发性生长,乌鸦和布谷鸟的生长缓慢。这个阶段包括三个步骤:

步骤a:更新每个维度的速度如下:
v k , d = v k , d + r ∗ c ∗ ( x b e s t , d − x k , d ) (7) v_{k,d}=v_{k,d}+r*c*(x_{best,d}-x_{k,d})\tag{7} vk,d=vk,d+rc(xbest,dxk,d)(7)
式中: v k , d v_{k,d} vk,d​为 c a t k cat_k catk d d d维度上的速度, x b e s t , d x_{best,d} xbest,d为适应度值最好的猫的位置, x k , d x_{k,d} xk,d c a t k cat_k catk的位置, c c c为常数, r r r​为[0,1]范围内的随机数。

步骤b:检查更新速度是否超过最大速度范围。如果新的速度大于最大速度,则将其设置为等于限制(速度限制被修改为从1线性降低到0.25)。

步骤c:更新 c a t k cat_k catk的位置:
x k , d = v k , d + x k , d (8) x_{k,d}=v_{k,d}+x_{k,d} \tag{8} xk,d=vk,d+xk,d(8)
算法流程

步骤1:初始化种群及算法参数

步骤2:评估适应度函数值及确定最优解及最优鸟巢。

步骤3:计算猫群,乌鸦群和鸟巢数量。

步骤4:进入筑巢阶段,按照公式(2)和(3)更新鸟巢位置。

步骤5:进入寄生阶段,按照公式(4)和(6)更新鸟巢位置。

步骤6:进入捕食阶段,按照步骤(a)至(c)即公式(7)和(8)更新鸟巢位置。

步骤7:重新评估适应度函数值,并更新全局最优解。

步骤8:判断是否满足迭代条件,若是满足则输出最优解,否则返回步骤2重新迭代更新计算。

2.实验结果

请添加图片描述

3.参考文献

[1] A.-A. A. Mohamed, S. A. Hassan, A. M. Hemeida et al., Parasitism–Predation algorithm (PPA): A novel approach for feature selection, Ain Shams Engineering Journal.

4.Matlab代码

这篇关于智能优化算法:寄生-捕食算法-附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071637

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来