示例:WPF中TreeView自定义TreeNode泛型绑定对象来实现级联勾选

本文主要是介绍示例:WPF中TreeView自定义TreeNode泛型绑定对象来实现级联勾选,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目的:在绑定TreeView的功能中经常会遇到需要在树节点前增加勾选CheckBox框,勾选本节点的同时也要同步显示父节点和子节点状态


二、实现


三、环境


VS2022

四、示例

定义如下节点类

   public partial class TreeNodeBase<T> : SelectBindable<T>, ITreeNode{public TreeNodeBase(T t) : base(t){}private bool? _isChecked = false;public bool? IsChecked{get { return _isChecked; }set{_isChecked = value;RaisePropertyChanged();RefreshParentCheckState();RefreshChildrenCheckState();}}private void RefreshParentCheckState(){if (Parent == null)return;bool allChecked = Parent.Nodes.All(l => l.IsChecked == true);if (allChecked){Parent.CheckOnlyCurrent(true);Parent.RefreshParentCheckState();return;}bool allUnChecked = Parent.Nodes.All(l => l.IsChecked == false);if (allUnChecked){Parent.CheckOnlyCurrent(false);Parent.RefreshParentCheckState();return;}Parent.CheckOnlyCurrent(null);Parent.RefreshParentCheckState();}private void RefreshChildrenCheckState(){foreach (TreeNodeBase<T> item in Nodes){item.CheckOnlyCurrent(IsChecked);item.RefreshChildrenCheckState();}}private void CheckOnlyCurrent(bool? value){_isChecked = value;RaisePropertyChanged("IsChecked");}public TreeNodeBase<T> Parent { get; set; }private ObservableCollection<TreeNodeBase<T>> _nodes = new ObservableCollection<TreeNodeBase<T>>();public ObservableCollection<TreeNodeBase<T>> Nodes{get { return _nodes; }set{_nodes = value;RaisePropertyChanged();}}public void AddNode(TreeNodeBase<T> node){node.Parent = this;Nodes.Add(node);}}

其中核心方法是如下方法

分别在当前节点勾选有变化时去更新父节点和子节点的勾选状态 

五、需要了解的知识点

TreeView 类 (System.Windows.Controls) | Microsoft Learn

六、源码地址

GitHub - HeBianGu/WPF-ControlDemo: 示例

GitHub - HeBianGu/WPF-ControlBase: Wpf封装的自定义控件资源库

GitHub - HeBianGu/WPF-Control: WPF轻量控件和皮肤库

七、了解更多

System.Windows.Controls 命名空间 | Microsoft Learn

https://github.com/HeBianGu

HeBianGu的个人空间-HeBianGu个人主页-哔哩哔哩视频

这篇关于示例:WPF中TreeView自定义TreeNode泛型绑定对象来实现级联勾选的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071407

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

用Microsoft.Extensions.Hosting 管理WPF项目.

首先引入必要的包: <ItemGroup><PackageReference Include="CommunityToolkit.Mvvm" Version="8.2.2" /><PackageReference Include="Microsoft.Extensions.Hosting" Version="8.0.0" /><PackageReference Include="Serilog

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

ROS话题通信流程自定义数据格式

ROS话题通信流程自定义数据格式 需求流程实现步骤定义msg文件编辑配置文件编译 在 ROS 通信协议中,数据载体是一个较为重要组成部分,ROS 中通过 std_msgs 封装了一些原生的数据类型,比如:String、Int32、Int64、Char、Bool、Empty… 但是,这些数据一般只包含一个 data 字段,结构的单一意味着功能上的局限性,当传输一些复杂的数据,比如:

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python