【AI开发】CRAG、Self-RAG、Adaptive-RAG

2024-06-18 00:20
文章标签 ai 开发 self adaptive rag crag

本文主要是介绍【AI开发】CRAG、Self-RAG、Adaptive-RAG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
先放一张基础RAG的流程图
https://blog.langchain.dev/agentic-rag-with-langgraph/
再放一个CRAG和self-RAG的LangChain官方博客

Corrective RAG(CRAG)

在这里插入图片描述
首先需要知道的是CRAG的特色发生在retrieval阶段的最后开始,即当我们获得到了近似的document(或者说relevant snippets)之后。
然后我们会进入一个额外的环节,叫Knowledge Correction。在这里呢我们会先对retrieval得到的每一个相关切片snippets进行evaluate,评估一下我们获取到的snippet是不是对问的问题有效?(此处重点:evaluator也是一个LLM
然后会有三种情况:

  • Correct:那就直接进行RAG的正常流程。(不过图中是加了进一步的优化)
  • Incorrect:那就直接丢弃掉原来的document,直接去web里搜索相关信息
  • Ambiguous:对于模糊不清的,就两种方式都要

那么在最后的generation部分,也是根据三种不同的情况分别做处理。

  • 之前是correct,那现在就直接拼接问题和相关文档
  • 之前是incorrect,那现在就直接拼接问题和web获取的信息
  • 之前是ambiguous,那现在就拼接三个加起来

以上是CRAG的原始大概逻辑,但在langchain中对此进行了简化:
在这里插入图片描述
在Langchain中只存在两种情况,即当incorrect的时候,直接就去web上search了(先经过一个transform_query对问题进行重写,变成更适合web搜索的形式)

Self-RAG

和CRAG的核心都是self-reflective,即当我发现结果不是那么有效时,我要通过环回溯到之前的步骤去优化。

在这里插入图片描述

和CRAG不一样的是,selfRAG的流程是从最开始进行的,大概流程:

  1. 先判断问题是不是需要retrieval,如上图右下角,此处的问题是写一篇essay,那其实根本没必要去retrieval,直接放入LLM就行
  2. 当问题需要检索的时候,我们会将得到的每个document snippet分别判断
    ①是否有关relevant:
    如果无关,那就不进行第②步。
    如果有关:
    ②如果有关,那是否支持support,或者部分支持partial support,或者不支持
  3. 当我们对所有snippets都判断后,按照相关性进行排序,然后依次送到LLM中去进行最后的步骤。
  4. 在最后生成后还有一次评估,总共三次。

在这里插入图片描述
这是用LangChain(LangGraph)做self-RAG的流程图,如果能自己动手画出来这个图,知道什么时候是哪个节点,什么时候是哪种边,就说明真正学会了。

推荐个b站up:沧海九粟
我的很多文章都是看他的视频做的

Adaptive RAG

这个我就不写了,有篇博客写的很好
https://blog.csdn.net/qq_45668004/article/details/138199143
总结一下就是:self-RAG里面的令牌大多都是关于判断得到的某个东西合不合要求,从而进行不一样的action。而Adaptive里面的令牌相当于一个分类器,把问题分类成几种类型,每种类型对应不同复杂程度的RAG模型

这篇关于【AI开发】CRAG、Self-RAG、Adaptive-RAG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070787

相关文章

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark