代码随想录算法训练营Day41|背包问题、分割等和子集

2024-06-17 21:12

本文主要是介绍代码随想录算法训练营Day41|背包问题、分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背包问题

二维

46. 携带研究材料(第六期模拟笔试) (kamacoder.com)

dp数组有两维,横轴表示背包重量j(0-j),纵轴表示不同物品(0-i),dp[i][j]即表示从下标为[0-i]的物品里任意取,对于重量为j的背包,最大的价值是多少。dp[i][j]的对物品i来说只有2种情况,物品i未放入或者放入,如果物品i未放入,由dp[i-1][j]可以推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i-1][j](当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)(参考代码随想录 (programmercarl.com))放物品时,

dp[i][j] =dp[i-1][j-weight[i]]+value[i],即当未放入i时,且重量为j-weight[i]的dp值加上i的价值。

即dp[i][j]的最终推导公式为:dp[i][j] = max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i])

考虑到dp[i][j]的含义,则dp[i][0]意味着背包重量为0的价值,理应全为0,dp[i][0]的值初始化全部为0,此外当i为0时,若j<weight[0]时,dp[i][j]的值应该为0因为背包容量比编号为0的物品重量要小,而当j>=weight[0]时,dp[0][j]的值应该是value[0],因为背包容量足够放编号为0的物品(注意这里是0-1背包问题,只有放入和取出两种操作,所以这里dp[0][j]只为values[0]而不是values[0]的倍数)

由于dp的递推公式dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i]),当前dp[i][j]仅与之前的元素有关,其他地方无需初始化。

vector<vector<int>>dp(weight.size(),vector<int>(bagweight + 1, 0));
for(int j = weight[0]; j <= bagweight; j++){dp[0][j] = value[0];
}

之后是确定遍历顺序,对物品和背包的遍历都是可行的。

以遍历物品为例,当j<weight[i]时,无法将物品i放入,则dp[i][j] = dp[i-1][j],否则为上述的dp公式。

for(int i = 1; i < weight.size();i++){for(int j = 0; j <= bagweight; j ++){if(j < weight[i])dp[i][j] = dp[i-1][j];elsedp[i][j] = max(dp[i][j-1],dp[i-1][j-weight[i]]+value[i]);}
}

遍历背包的话

for(int j = 0; j <= bagweight; j++){for(int i = 0; i < weight.size(); i++){if(j < weight[i])dp[i][j] = dp[i-1][j];elsedp[i][j] = max(dp[i-1][j],dp[i-1][j-value[i]] + value[i]);}
}

只是变更一下顺序,其他一样(对本题是这样的)。

之后就是返回dp数组的最大值即可。

代码随想录的代码如下:

//二维dp数组实现
#include <bits/stdc++.h>
using namespace std;int n, bagweight;// bagweight代表行李箱空间
void solve() {vector<int> weight(n, 0); // 存储每件物品所占空间vector<int> value(n, 0);  // 存储每件物品价值for(int i = 0; i < n; ++i) {cin >> weight[i];}for(int j = 0; j < n; ++j) {cin >> value[j];}// dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));// 初始化, 因为需要用到dp[i - 1]的值// j < weight[0]已在上方被初始化为0// j >= weight[0]的值就初始化为value[0]for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];}for(int i = 1; i < weight.size(); i++) { // 遍历科研物品for(int j = 0; j <= bagweight; j++) { // 遍历行李箱容量// 如果装不下这个物品,那么就继承dp[i - 1][j]的值if (j < weight[i]) dp[i][j] = dp[i - 1][j];// 如果能装下,就将值更新为 不装这个物品的最大值 和 装这个物品的最大值 中的 最大值// 装这个物品的最大值由容量为j - weight[i]的包任意放入序号为[0, i - 1]的最大值 + 该物品的价值构成else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}cout << dp[weight.size() - 1][bagweight] << endl;
}int main() {while(cin >> n >> bagweight) {solve();}return 0;

算法使用两层嵌套循环来补全dp数组,外层执行weight.size()次,即n次,内层执行了bagweight+1次,定为m次,时间复杂度为O(n*m),空间复杂度使用了二维数组,O(n*m)。

一维

滚动数组,不太理解,周末看看。

代码随想录 (programmercarl.com)

// 一维dp数组实现
#include <iostream>
#include <vector>
using namespace std;int main() {// 读取 M 和 Nint M, N;cin >> M >> N;vector<int> costs(M);vector<int> values(M);for (int i = 0; i < M; i++) {cin >> costs[i];}for (int j = 0; j < M; j++) {cin >> values[j];}// 创建一个动态规划数组dp,初始值为0vector<int> dp(N + 1, 0);// 外层循环遍历每个类型的研究材料for (int i = 0; i < M; ++i) {// 内层循环从 N 空间逐渐减少到当前研究材料所占空间for (int j = N; j >= costs[i]; --j) {// 考虑当前研究材料选择和不选择的情况,选择最大值dp[j] = max(dp[j], dp[j - costs[i]] + values[i]);}}// 输出dp[N],即在给定 N 行李空间可以携带的研究材料最大价值cout << dp[N] << endl;return 0;
}

分割等和子集

416. 分割等和子集 - 力扣(LeetCode)

        本来想着直接排序然后依次加入最小的数,然后发现果然有错[1,1,2,2]。

        以[1,5,11,5]这个题例为例,可以抽象为 一个背包容量为11,剩余元素(只能使用1次)是否能装满这个容量为11的背包。0-1背包问题。

        DP数组含义,容量为j的最大价值为dp[j],当dp[target] == target时,表示能装满(此处的target为数组sum的一半,因为两个子集和要相等),即能实现分割等和子集。

        背包容量从0到10001,因为数字总和不超过20000,则target<=10000,dp数组长度到达10001就够了。

        dp[j] = max(dp[j],dp[j - nums[i]]+ nums[i]);

        对dp的初始化,由于nums数组全为正整数,可以全部初始化为0,(若存在负数,则应初始化为INT_MIN)。

遍历顺序物品遍历在外,背包遍历在内层,且内层倒序遍历。参考代码随想录 (programmercarl.com)

最后需考虑,当dp[target] == target时,返回true,否则为false。

此外,若sum%2 == 1,则表明sum为奇数,不存在两个相等的子数组和,return false。剪枝。

class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0; for(auto x:nums){sum += x; // 计算数组元素的总和}// 如果总和是奇数,那么不能平分,直接返回falseif(sum%2 == 1)return false;// 计算目标和,即每个子集应该达到的和const int target = sum/2;// 初始化动态规划数组dp,大小为10001,初值都为0// dp[j]表示是否能够从前i个数字中选取一些数字,使得这些数字的和为jvector<int>dp(10001, 0);// 遍历数组中的每个数字for(int i = 0; i < nums.size();i++){// 从大到小遍历目标和及其以下的值for(int j = target; j >= nums[i]; j--){// 更新dp[j],选取或不选取当前数字,取两种情况的最大值dp[j] = max(dp[j],dp[j - nums[i]] +nums[i]);}}// 如果dp[target]等于target,说明可以找到和为target的子集,返回trueif(dp[target] == target)return true;return false;}
};

算法的时间复杂度为O(n^2),空间复杂度为O(n)。

这篇关于代码随想录算法训练营Day41|背包问题、分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070496

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放