图论 —— 最短路 —— Johnson 算法

2024-06-17 19:48
文章标签 johnson 图论 短路 算法

本文主要是介绍图论 —— 最短路 —— Johnson 算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【概述】

对于单源最短路来说,有时间复杂度为 O(E+VlogV) 要求权值非负的 Dijkstra,时间复杂度为 O(VE) 适用于带负权值的 Bellman Ford

对于全源最短路来说,除了时间复杂度为 O(V*V*V) 利用动态规划思想的 Floyd 算法外,可以认为是单源最短路径的推广,即分别以每个顶点为源点求其至其他顶点的最短距离

对于每个顶点利用 Ford 算法,时间复杂度为 O(V*V*E),由于图中顶点都是连通的,边的数量可能会比点多,这个时间并没有比 Floyd 更优;而对于每个顶点利用 Dijkstra 算法,时间复杂度为 O(V*E+V*V*logV),时间复杂度更优,但问题在于 Dijkstra 要求图中边权非负,不适合通用情况

针对 Dijkstra 不能适用于存在负边权的情况,Donald B. Johnson 提出了对所有边的权值进行重赋值的算法,使得边的权值非负,从而可以利用 Dijkstra 进行最短路的计算,即 Johnson 算法

【算法原理】

Johnson 算法的关键在于引入了一个势能函数 h[],其作为边的映射关系

假设有一个新的点 n+1,其指向其他所有点的边权均为 0,计算这个新点到其他所有点的最短路径数组 h[]:对于边 (u,v),其权值修改为 dis(u,v)=dis(u,v)+h[u]-h[v]

新增点 n+1 到 u、v 两点的最短路径分别为 h[u]、h[v],这两点边的权重为 dis(u,v),那么满足不等式:h[v]<=h[u]+dis(u,v),那么可以保证新的权重为非负值

对所有边进行重赋值后,再进行 n 次 Dijkstra 来解决 n 个单源最短路问题

设 s 到 t 的最短路经过了 v1,v2,...,vk,那么边的累计和 dis'(s,t)=dis(s,t)+h[s]-h[t],原来的最短路为:dis(s,t)=dis'(s,t)+h[v]-h[u]

综上,Johnson 算法的描述如下:

  1. 对于给定图 G=(V,E),新增一顶点 S,对 S 到图中所有点都建一条边,得到新图 G'
  2. 对图 G' 中点 S 使用 Ford 算法计算单源最短路,得到势能函数 h[]
  3. 对原图 G 中所有的边进行重赋值:对于每条边 (u,v),其新的权值为 dis(u,v)+h[u]-h(v)
  4. 对原图 G 的每个顶点运行 Dijkstra,求得全源最短路径

【模版】

vector<Pair> edge[N];
int dis[N][N];
int h[N];
bool vis[N];
void SPFA(int n) {memset(h, INF, sizeof(h));memset(vis, false, sizeof(vis));h[n + 1] = false;queue<int> Q;Q.push(n + 1);while (!Q.empty()) {int u = Q.front();Q.pop();for (int i = 0; i < edge[u].size(); i++) {int v = edge[u][i].first;int w = edge[u][i].second;if (h[v] > h[u] + w) {h[v] = h[u] + w;if (!vis[v]) {vis[v] = true;Q.push(v);}}}}
}
void Dijkstra(int S) {memset(dis, INF, sizeof(dis));dis[S][S] = 0;priority_queue<Pair> Q;Q.push(make_pair(0, S));while (!Q.empty()) {Pair u = Q.top();Q.pop();if (dis[S][u.second] < u.first)continue;for (int i = 0; i < edge[u.second].size(); i++) {int v = edge[u.second][i].first;int w = edge[u.second][i].second;if (dis[S][v] > dis[S][u.second] + w) {dis[S][v] = dis[S][u.second] + w;Q.push(make_pair(dis[S][v], v));}}}
}
void Johnson(int n) {SPFA(n); //计算n+1号点到其他点的距离for (int i = 1; i <= n; i++) //对所有边重新赋值for (int j = 0; j < edge[i].size(); j++)edge[i][j].second += h[i] - h[edge[i][j].first];for (int i = 1; i <= n; i++) //对所有点跑一次DijkDijkstra(i);
}
int main() {int n, m;scanf("%d%d", &n, &m);for (int i = 1; i <= m; i++) {int x, y, w;scanf("%d%d%d", &x, &y, &w);edge[x].push_back(make_pair(y, w));}for (int i = 1; i <= n; i++) //新点到其他点建边,边权为0edge[n + 1].push_back(make_pair(i, 0));Johnson(n);for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {if (dis[i][j] == INF)printf("-1 ");else printf("%d ", dis[i][j] + h[j] - h[i]);printf("\n");}}return 0;
}

 

这篇关于图论 —— 最短路 —— Johnson 算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070377

相关文章

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

LeetCode 算法:二叉树的中序遍历 c++

原题链接🔗:二叉树的中序遍历 难度:简单⭐️ 题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root = [1,null,2,3] 输出:[1,3,2] 示例 2: 输入:root = [] 输出:[] 示例 3: 输入:root = [1] 输出:[1] 提示: 树中节点数目在范围 [0, 100] 内 -100 <= Node.

【Java算法】滑动窗口 下

​ ​    🔥个人主页: 中草药 🔥专栏:【算法工作坊】算法实战揭秘 🦌一.水果成篮 题目链接:904.水果成篮 ​ 算法原理 算法原理是使用“滑动窗口”(Sliding Window)策略,结合哈希表(Map)来高效地统计窗口内不同水果的种类数量。以下是详细分析: 初始化:创建一个空的哈希表 map 用来存储每种水果的数量,初始化左右指针 left

ROS2从入门到精通4-4:局部控制插件开发案例(以PID算法为例)

目录 0 专栏介绍1 控制插件编写模板1.1 构造控制插件类1.2 注册并导出插件1.3 编译与使用插件 2 基于PID的路径跟踪原理3 控制插件开发案例(PID算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌握ROS2底层基本分布式原理,并具有机器人建模和应用ROS2进行实际项目的开发和调试的工程能力。 🚀详情:《ROS2从入门到精通》 1 控制插

算法与数据结构面试宝典——回溯算法详解(C#,C++)

文章目录 1. 回溯算法的定义及应用场景2. 回溯算法的基本思想3. 递推关系式与回溯算法的建立4. 状态转移方法5. 边界条件与结束条件6. 算法的具体实现过程7. 回溯算法在C#,C++中的实际应用案例C#示例C++示例 8. 总结回溯算法的主要特点与应用价值 回溯算法是一种通过尝试各种可能的组合来找到所有解的算法。这种算法通常用于解决组合问题,如排列、组合、棋盘游

【图像识别系统】昆虫识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50

一、介绍 昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集(‘蜜蜂’, ‘甲虫’, ‘蝴蝶’, ‘蝉’, ‘蜻蜓’, ‘蚱蜢’, ‘蛾’, ‘蝎子’, ‘蜗牛’, ‘蜘蛛’)进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一

【数据结构与算法 经典例题】使用队列实现栈(图文详解)

💓 博客主页:倔强的石头的CSDN主页               📝Gitee主页:倔强的石头的gitee主页    ⏩ 文章专栏:《数据结构与算法 经典例题》C语言                                   期待您的关注 ​​ 目录  一、问题描述 二、前置知识 三、解题思路 四、C语言实现代码 🍃队列实现代码:

算法11—判断一个树是不是二叉查询树

问题: 给定一个二叉树,判断它是否是二叉查询树。 思路: 要判断是否是二叉查询树,标准就是看每一个节点是否满足:1、左节点及以下节点的值比它小;2、右节点及以下节点的值比它大。当然,前提是子节点都存在的情况。所以,我们需要从根节点不断向下递归,只要所有节点都满足,那么就是BST,否则,就不是。 代码: [java]  view plain copy pri