单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧

2024-06-17 07:36

本文主要是介绍单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里先接上一篇文章单调栈,这里还有单调栈的一道题

题目一(单调栈续)

给定一个数组arr, 返回所有子数组最小值的累加和

就是一个数组,有很多的子数组,每个数组肯定有一个最小值,要把所有子数组的最小值的累加和。例如数组 [3 1 4 2] 子数组 3 的最小值是 3 子数组 3 1 的最小值是  1  子数组 3  1  4 的累加和是1 等等,把所有的累加和相加,就是我们要求的。这一题我们暴力解肯定是不行的,因为时间复杂度太高了  ......   我们假设 i 位置的数是 x我们要找到以x  为最小值的子数组的范围,举个具体的例子, i =10位置的数是  7  ,我左边找离我最近的比我小的 值是 5 ,它在 5位置,右边离我最近的比我小的是 4 在 15 位置,中间这个位置是从哪到哪呢,是从 6 位置开始 到 14 位置结束,而且从 6 到 14  位置最小值是 这个7,我们看从6 到 14 这些数组中,有多少个是以7为最小值的,我们第一反应是都是,都是吗,我们假设 6位置是个10  我们 6 到 6位置就是以10 为最小值的,假设7位置是 8 那么 6 到 7 就是以 7位置的8 为最小值的,那到底有多少是以 10 位置的7 为最小值的呢,你只要跨过10位置的7,就都是以该位置为最小值的,比如 6到 10位置, 7到 10位置,10位置到11位置,等等,都是。 6 7 8 9 10 11 12 13 14 一共有多少个子数组呢,我们需要跨过 10 位置  6  7 8 9 10  5个数字  10 11 12 13 14 5个数字,所以一共有 5 * 5 = 25 个 。 我们推广一下,假如说   一个i 位置,它的值为 x  ,左边离他最近的比它小的位置是k位置 值是 y,右边离他最近的比它小的位置是 j  值是z,那么产生多少累加和,i 是到不了k 的,得从 k + 1 开始,那有多少个开始位置呢 i - (k + 1) + 1个位置, 一化简,i - k 个位置,有多少个结束位置呢  (j - i )个结束位置,他们想 乘,就是子数组的数量这一题我们先假设是无重复值的。看是不是相当的清晰,注意刚刚我说是先假设无重复值的,那有点人就说,那我就是有重复值咋办,有重复值,就麻烦了,如果有重复值,我们需要做一些改进  举个栗子  2 4 5 3 6 6 6 3 7 8 6 3 5 3 2 ,我们关注 3  我们 3位置的 3 左边正常找比它小的,右边到 7 位置的 3 时我们就停住,在算 7 位置的 3时,左边比他小的位置可以算到 0位置的2  但右边就只能算到11位置的3 前一个位置。

代码如下:

public static int sumSubarrayMins(int[] arr){int[] left = nearLeftEqualsLeft(arr);int[] right = nearRightEqualsRight(arr);long sum = 0;for (int i = 0; i < arr.length; i++) {long start = i - left[i];long end = right[i] - i;sum += arr[i] * start * end;sum %= 1000000007;}return (int)sum;}private static int[] nearLeftEqualsLeft(int[] arr) {int[] result = new int[arr.length];Stack<Integer> stack = new Stack<>();for (int i = 0; i < arr.length; i++) {while (!stack.isEmpty() && arr[i] <= arr[stack.peek()]){Integer pop = stack.pop();result[pop] = stack.isEmpty() ? -1 : stack.peek();}stack.push(i);}while (!stack.isEmpty()){Integer pop = stack.pop();result[pop] = stack.isEmpty() ? -1 : stack.peek();}return result;}private static int[] nearRightEqualsRight(int[] arr){int[] result = new int[arr.length];Stack<Integer> stack = new Stack<>();for (int i = 0; i < arr.length; i++) {while (!stack.isEmpty() && arr[i] <= arr[stack.peek()] ){Integer pop = stack.pop();result[pop] =  i;}stack.push(i);}while (!stack.isEmpty()){Integer pop = stack.pop();result[pop] = arr.length;}return result;}

这里面用的是栈,时间复杂度为O(n),对于这一题来说,单从时间复杂度来算,其实已经算是最优解了,但是,对于常数时间,其实我们是可以继续进行优化的。那就是用数组代替栈,因为数组的寻址是很快的,所以,如果想进一步提升,就需要用数组代替栈去优化常数时间了。这里就直接把代码给大家了,有兴趣的同学可以研究研究。效率提升也还是蛮大的。

public static int sumSubarrayMins(int[] arr) {int[] stack = new int[arr.length];int[] left = nearLessEqualLeft(arr, stack);int[] right = nearLessRight(arr, stack);long ans = 0;for (int i = 0; i < arr.length; i++) {long start = i - left[i];long end = right[i] - i;ans += start * end * (long) arr[i];ans %= 1000000007;}return (int) ans;}public static int[] nearLessEqualLeft(int[] arr, int[] stack) {int N = arr.length;int[] left = new int[N];int size = 0;for (int i = N - 1; i >= 0; i--) {while (size != 0 && arr[i] <= arr[stack[size - 1]]) {left[stack[--size]] = i;}stack[size++] = i;}while (size != 0) {left[stack[--size]] = -1;}return left;}public static int[] nearLessRight(int[] arr, int[] stack) {int N = arr.length;int[] right = new int[N];int size = 0;for (int i = 0; i < N; i++) {while (size != 0 && arr[stack[size - 1]] > arr[i]) {right[stack[--size]] = i;}stack[size++] = i;}while (size != 0) {right[stack[--size]] = N;}return right;}

题目二.斐波那契数列

斐波那契数列大家都知道,包括我们要求斐波那契数列第n项,相信大家也都知道,正常我们来求,一个一个算呗,1 1 2 3 5 8 12 ......    是一个O(n)的方法是最优解吗? 不是,不是最优解,难道还有比O(n)还好的方法嘛,有O(log N) 逆天了,哇,怎么可能呢,你怎么能通过log N解决呢,有可能,来自于哪里,注意,我们都知道斐波那契数列是 F(n) = F(n-1) + F(n - 2) 并且第一项是 1 第二项也是 1 的严格递推式。面对这种除了初始项 剩下项是严格的递推式都有log N的方法。不光是斐波那契数列,只要是严格递推式,都有logN的方法。那什么样的式子没有logN的方法呢,有条件转移的式子没有logN的方法,比如说有个 if  else  在这种条件下是一个式子,在另一种条件下又是另一种式子,这种的就没有logN的方法。  这里用到了一点的线性代数,但是它并不难,什么意思呢,就是这样的, F(N) = F(N-1) + F(N-2)的话,第N项和N-1项和N-2项是严格递推关系,那么来看,它减的最多的是谁,是 2 我们说他是一个2阶递推,2阶递推啥意思,我们知道斐波那契数列 F1 = 1, F2 = 1 ,它必存在下列关系。

\left | F3,F2 \right | = \left | F2,F1 \right | * \begin{vmatrix} a & b \\ c & d \end{vmatrix}

线性代数就是为了解决严格递推第几项的问题才发明的,所以不要问为什么,这是线性代数的思想基础。同样道理

\left | F4,F3 \right | = \left | F3,F2 \right | * \begin{vmatrix} a & b \\ c & d \end{vmatrix}

这个 2 * 2的矩阵到底是啥玩意呢,不知道,我们可以算出来。因为斐波那契数列前几项我们是可以列出来的对不对,来,我们来实际算一下。

                              

有啥用,我们继续往下看。

通过上图我们可以看到,我们如果想求斐波那契数列的第n项,关键点再求某个矩阵的某一个次方,只要你这个矩阵的某个次方算的足够快,我这个斐波那契数列第n项就算的足够快。对不对,那下面这个问题就来了,一个矩阵的n次方怎么算的足够快,我们先看一个特别特别基本的问题,一个数的n次方怎么算最快,比如 10^75 怎么算最快 我们把相同的方式用到矩阵上,算矩阵的n次方不就快了嘛。那10^75怎么算最快呢,如果我们一个一个乘,就需要乘74次,这样就是一个O(n)的方法。它不够快, 75次方的二进制是啥,我们看 75 怎么分解  75 = 64 + 8 + 2 + 1 所以 75的二进制就是 1001011,接下来我们看如下图。

我们先二进制为 1 的位置,代表需要一个 10 的对应的次方。数字的n次方解决了,那矩阵呢,也是一样的。我们看上图最开始 的 1 那么放在矩阵中应该是什么呢,单位矩阵,就是对角线都为 1 ,其余全为 0 的矩阵。

public class FibonacciProblem {public static int f1(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return 1;}return f1(n - 1) + f1(n - 2);}public static int f2(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return 1;}int res = 1;int pre = 1;int tmp = 0;for (int i = 3; i <= n; i++) {tmp = res;res = res + pre;pre = tmp;}return res;}// O(logN)public static int f3(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return 1;}// [ 1 ,1 ]// [ 1, 0 ]int[][] base = { { 1, 1 }, { 1, 0 } };int[][] res = matrixPower(base, n - 2);return res[0][0] + res[1][0];}public static int[][] matrixPower(int[][] m, int p) {int[][] res = new int[m.length][m[0].length];for (int i = 0; i < res.length; i++) {res[i][i] = 1;}// res = 矩阵中的1int[][] t = m;// 矩阵1次方for (; p != 0; p >>= 1) {if ((p & 1) != 0) {res = product(res, t);}t = product(t, t);}return res;}// 两个矩阵乘完之后的结果返回public static int[][] product(int[][] a, int[][] b) {int n = a.length;int m = b[0].length;int k = a[0].length; // a的列数同时也是b的行数int[][] ans = new int[n][m];for(int i = 0 ; i < n; i++) {for(int j = 0 ; j < m;j++) {for(int c = 0; c < k; c++) {ans[i][j] += a[i][c] * b[c][j];}}}return ans;}public static void main(String[] args) {int n = 19;System.out.println(f1(n));System.out.println(f2(n));System.out.println(f3(n));System.out.println("===");}}

题目三、返回n年后牛的数量

第一年农场有1只成熟的母牛A,往后的每年:
1)每一只成熟的母牛都会生一只母牛
2)每一只新出生的母牛都在出生的第三年成熟
3)每一只母牛永远不会死 返回N年后牛的数量

题目呢很好理解,然后大家观察下面的例子,是不是一下子就看出公式是什么了。

然后我们就开始推这个矩阵是什么

                                       

这样是不是就知道矩阵是什么了,看是不是和斐波那契数列一样,接下就知道该怎么办了吧

public class FibonacciProblem {public static int c1(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2 || n == 3) {return n;}return c1(n - 1) + c1(n - 3);}public static int c2(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2 || n == 3) {return n;}int res = 3;int pre = 2;int prepre = 1;int tmp1 = 0;int tmp2 = 0;for (int i = 4; i <= n; i++) {tmp1 = res;tmp2 = pre;res = res + prepre;pre = tmp1;prepre = tmp2;}return res;}public static int c3(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2 || n == 3) {return n;}int[][] base = { { 1, 1, 0 }, { 0, 0, 1 }, { 1, 0, 0 } };int[][] res = matrixPower(base, n - 3);return 3 * res[0][0] + 2 * res[1][0] + res[2][0];}public static int[][] matrixPower(int[][] m, int p) {int[][] res = new int[m.length][m[0].length];for (int i = 0; i < res.length; i++) {res[i][i] = 1;}// res = 矩阵中的1int[][] t = m;// 矩阵1次方for (; p != 0; p >>= 1) {if ((p & 1) != 0) {res = product(res, t);}t = product(t, t);}return res;}// 两个矩阵乘完之后的结果返回public static int[][] product(int[][] a, int[][] b) {int n = a.length;int m = b[0].length;int k = a[0].length; // a的列数同时也是b的行数int[][] ans = new int[n][m];for(int i = 0 ; i < n; i++) {for(int j = 0 ; j < m;j++) {for(int c = 0; c < k; c++) {ans[i][j] += a[i][c] * b[c][j];}}}return ans;}public static void main(String[] args) {int n = 19;System.out.println(c1(n));System.out.println(c2(n));System.out.println(c3(n));System.out.println("===");}}

题目四、给定一个数N,想象只由0和1两种字符,组成的所有长度为N的字符串 如果某个字符串,任何0字符的左边都有1紧挨着,认为这个字符串达标 返回有多少达标的字符串

通过观察我们发现,这不就是 初始值为 1 和 2  的斐波那契数列嘛。代码也很简单,就直接给大家了。

public class FibonacciProblem {public static int[][] matrixPower(int[][] m, int p) {int[][] res = new int[m.length][m[0].length];for (int i = 0; i < res.length; i++) {res[i][i] = 1;}// res = 矩阵中的1int[][] t = m;// 矩阵1次方for (; p != 0; p >>= 1) {if ((p & 1) != 0) {res = product(res, t);}t = product(t, t);}return res;}// 两个矩阵乘完之后的结果返回public static int[][] product(int[][] a, int[][] b) {int n = a.length;int m = b[0].length;int k = a[0].length; // a的列数同时也是b的行数int[][] ans = new int[n][m];for(int i = 0 ; i < n; i++) {for(int j = 0 ; j < m;j++) {for(int c = 0; c < k; c++) {ans[i][j] += a[i][c] * b[c][j];}}}return ans;}public static int s1(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return n;}return s1(n - 1) + s1(n - 2);}public static int s2(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return n;}int res = 2;int pre = 1;int tmp = 0;for (int i = 3; i <= n; i++) {tmp = res;res = res + pre;pre = tmp;}return res;}public static int s3(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return n;}int[][] base = { { 1, 1 }, { 1, 0 } };int[][] res = matrixPower(base, n - 2);return 2 * res[0][0] + res[1][0];}public static void main(String[] args) {int n = 19;System.out.println(s1(n));System.out.println(s2(n));System.out.println(s3(n));System.out.println("===");}}

这篇关于单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068834

相关文章

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na