单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧

2024-06-17 07:36

本文主要是介绍单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里先接上一篇文章单调栈,这里还有单调栈的一道题

题目一(单调栈续)

给定一个数组arr, 返回所有子数组最小值的累加和

就是一个数组,有很多的子数组,每个数组肯定有一个最小值,要把所有子数组的最小值的累加和。例如数组 [3 1 4 2] 子数组 3 的最小值是 3 子数组 3 1 的最小值是  1  子数组 3  1  4 的累加和是1 等等,把所有的累加和相加,就是我们要求的。这一题我们暴力解肯定是不行的,因为时间复杂度太高了  ......   我们假设 i 位置的数是 x我们要找到以x  为最小值的子数组的范围,举个具体的例子, i =10位置的数是  7  ,我左边找离我最近的比我小的 值是 5 ,它在 5位置,右边离我最近的比我小的是 4 在 15 位置,中间这个位置是从哪到哪呢,是从 6 位置开始 到 14 位置结束,而且从 6 到 14  位置最小值是 这个7,我们看从6 到 14 这些数组中,有多少个是以7为最小值的,我们第一反应是都是,都是吗,我们假设 6位置是个10  我们 6 到 6位置就是以10 为最小值的,假设7位置是 8 那么 6 到 7 就是以 7位置的8 为最小值的,那到底有多少是以 10 位置的7 为最小值的呢,你只要跨过10位置的7,就都是以该位置为最小值的,比如 6到 10位置, 7到 10位置,10位置到11位置,等等,都是。 6 7 8 9 10 11 12 13 14 一共有多少个子数组呢,我们需要跨过 10 位置  6  7 8 9 10  5个数字  10 11 12 13 14 5个数字,所以一共有 5 * 5 = 25 个 。 我们推广一下,假如说   一个i 位置,它的值为 x  ,左边离他最近的比它小的位置是k位置 值是 y,右边离他最近的比它小的位置是 j  值是z,那么产生多少累加和,i 是到不了k 的,得从 k + 1 开始,那有多少个开始位置呢 i - (k + 1) + 1个位置, 一化简,i - k 个位置,有多少个结束位置呢  (j - i )个结束位置,他们想 乘,就是子数组的数量这一题我们先假设是无重复值的。看是不是相当的清晰,注意刚刚我说是先假设无重复值的,那有点人就说,那我就是有重复值咋办,有重复值,就麻烦了,如果有重复值,我们需要做一些改进  举个栗子  2 4 5 3 6 6 6 3 7 8 6 3 5 3 2 ,我们关注 3  我们 3位置的 3 左边正常找比它小的,右边到 7 位置的 3 时我们就停住,在算 7 位置的 3时,左边比他小的位置可以算到 0位置的2  但右边就只能算到11位置的3 前一个位置。

代码如下:

public static int sumSubarrayMins(int[] arr){int[] left = nearLeftEqualsLeft(arr);int[] right = nearRightEqualsRight(arr);long sum = 0;for (int i = 0; i < arr.length; i++) {long start = i - left[i];long end = right[i] - i;sum += arr[i] * start * end;sum %= 1000000007;}return (int)sum;}private static int[] nearLeftEqualsLeft(int[] arr) {int[] result = new int[arr.length];Stack<Integer> stack = new Stack<>();for (int i = 0; i < arr.length; i++) {while (!stack.isEmpty() && arr[i] <= arr[stack.peek()]){Integer pop = stack.pop();result[pop] = stack.isEmpty() ? -1 : stack.peek();}stack.push(i);}while (!stack.isEmpty()){Integer pop = stack.pop();result[pop] = stack.isEmpty() ? -1 : stack.peek();}return result;}private static int[] nearRightEqualsRight(int[] arr){int[] result = new int[arr.length];Stack<Integer> stack = new Stack<>();for (int i = 0; i < arr.length; i++) {while (!stack.isEmpty() && arr[i] <= arr[stack.peek()] ){Integer pop = stack.pop();result[pop] =  i;}stack.push(i);}while (!stack.isEmpty()){Integer pop = stack.pop();result[pop] = arr.length;}return result;}

这里面用的是栈,时间复杂度为O(n),对于这一题来说,单从时间复杂度来算,其实已经算是最优解了,但是,对于常数时间,其实我们是可以继续进行优化的。那就是用数组代替栈,因为数组的寻址是很快的,所以,如果想进一步提升,就需要用数组代替栈去优化常数时间了。这里就直接把代码给大家了,有兴趣的同学可以研究研究。效率提升也还是蛮大的。

public static int sumSubarrayMins(int[] arr) {int[] stack = new int[arr.length];int[] left = nearLessEqualLeft(arr, stack);int[] right = nearLessRight(arr, stack);long ans = 0;for (int i = 0; i < arr.length; i++) {long start = i - left[i];long end = right[i] - i;ans += start * end * (long) arr[i];ans %= 1000000007;}return (int) ans;}public static int[] nearLessEqualLeft(int[] arr, int[] stack) {int N = arr.length;int[] left = new int[N];int size = 0;for (int i = N - 1; i >= 0; i--) {while (size != 0 && arr[i] <= arr[stack[size - 1]]) {left[stack[--size]] = i;}stack[size++] = i;}while (size != 0) {left[stack[--size]] = -1;}return left;}public static int[] nearLessRight(int[] arr, int[] stack) {int N = arr.length;int[] right = new int[N];int size = 0;for (int i = 0; i < N; i++) {while (size != 0 && arr[stack[size - 1]] > arr[i]) {right[stack[--size]] = i;}stack[size++] = i;}while (size != 0) {right[stack[--size]] = N;}return right;}

题目二.斐波那契数列

斐波那契数列大家都知道,包括我们要求斐波那契数列第n项,相信大家也都知道,正常我们来求,一个一个算呗,1 1 2 3 5 8 12 ......    是一个O(n)的方法是最优解吗? 不是,不是最优解,难道还有比O(n)还好的方法嘛,有O(log N) 逆天了,哇,怎么可能呢,你怎么能通过log N解决呢,有可能,来自于哪里,注意,我们都知道斐波那契数列是 F(n) = F(n-1) + F(n - 2) 并且第一项是 1 第二项也是 1 的严格递推式。面对这种除了初始项 剩下项是严格的递推式都有log N的方法。不光是斐波那契数列,只要是严格递推式,都有logN的方法。那什么样的式子没有logN的方法呢,有条件转移的式子没有logN的方法,比如说有个 if  else  在这种条件下是一个式子,在另一种条件下又是另一种式子,这种的就没有logN的方法。  这里用到了一点的线性代数,但是它并不难,什么意思呢,就是这样的, F(N) = F(N-1) + F(N-2)的话,第N项和N-1项和N-2项是严格递推关系,那么来看,它减的最多的是谁,是 2 我们说他是一个2阶递推,2阶递推啥意思,我们知道斐波那契数列 F1 = 1, F2 = 1 ,它必存在下列关系。

\left | F3,F2 \right | = \left | F2,F1 \right | * \begin{vmatrix} a & b \\ c & d \end{vmatrix}

线性代数就是为了解决严格递推第几项的问题才发明的,所以不要问为什么,这是线性代数的思想基础。同样道理

\left | F4,F3 \right | = \left | F3,F2 \right | * \begin{vmatrix} a & b \\ c & d \end{vmatrix}

这个 2 * 2的矩阵到底是啥玩意呢,不知道,我们可以算出来。因为斐波那契数列前几项我们是可以列出来的对不对,来,我们来实际算一下。

                              

有啥用,我们继续往下看。

通过上图我们可以看到,我们如果想求斐波那契数列的第n项,关键点再求某个矩阵的某一个次方,只要你这个矩阵的某个次方算的足够快,我这个斐波那契数列第n项就算的足够快。对不对,那下面这个问题就来了,一个矩阵的n次方怎么算的足够快,我们先看一个特别特别基本的问题,一个数的n次方怎么算最快,比如 10^75 怎么算最快 我们把相同的方式用到矩阵上,算矩阵的n次方不就快了嘛。那10^75怎么算最快呢,如果我们一个一个乘,就需要乘74次,这样就是一个O(n)的方法。它不够快, 75次方的二进制是啥,我们看 75 怎么分解  75 = 64 + 8 + 2 + 1 所以 75的二进制就是 1001011,接下来我们看如下图。

我们先二进制为 1 的位置,代表需要一个 10 的对应的次方。数字的n次方解决了,那矩阵呢,也是一样的。我们看上图最开始 的 1 那么放在矩阵中应该是什么呢,单位矩阵,就是对角线都为 1 ,其余全为 0 的矩阵。

public class FibonacciProblem {public static int f1(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return 1;}return f1(n - 1) + f1(n - 2);}public static int f2(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return 1;}int res = 1;int pre = 1;int tmp = 0;for (int i = 3; i <= n; i++) {tmp = res;res = res + pre;pre = tmp;}return res;}// O(logN)public static int f3(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return 1;}// [ 1 ,1 ]// [ 1, 0 ]int[][] base = { { 1, 1 }, { 1, 0 } };int[][] res = matrixPower(base, n - 2);return res[0][0] + res[1][0];}public static int[][] matrixPower(int[][] m, int p) {int[][] res = new int[m.length][m[0].length];for (int i = 0; i < res.length; i++) {res[i][i] = 1;}// res = 矩阵中的1int[][] t = m;// 矩阵1次方for (; p != 0; p >>= 1) {if ((p & 1) != 0) {res = product(res, t);}t = product(t, t);}return res;}// 两个矩阵乘完之后的结果返回public static int[][] product(int[][] a, int[][] b) {int n = a.length;int m = b[0].length;int k = a[0].length; // a的列数同时也是b的行数int[][] ans = new int[n][m];for(int i = 0 ; i < n; i++) {for(int j = 0 ; j < m;j++) {for(int c = 0; c < k; c++) {ans[i][j] += a[i][c] * b[c][j];}}}return ans;}public static void main(String[] args) {int n = 19;System.out.println(f1(n));System.out.println(f2(n));System.out.println(f3(n));System.out.println("===");}}

题目三、返回n年后牛的数量

第一年农场有1只成熟的母牛A,往后的每年:
1)每一只成熟的母牛都会生一只母牛
2)每一只新出生的母牛都在出生的第三年成熟
3)每一只母牛永远不会死 返回N年后牛的数量

题目呢很好理解,然后大家观察下面的例子,是不是一下子就看出公式是什么了。

然后我们就开始推这个矩阵是什么

                                       

这样是不是就知道矩阵是什么了,看是不是和斐波那契数列一样,接下就知道该怎么办了吧

public class FibonacciProblem {public static int c1(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2 || n == 3) {return n;}return c1(n - 1) + c1(n - 3);}public static int c2(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2 || n == 3) {return n;}int res = 3;int pre = 2;int prepre = 1;int tmp1 = 0;int tmp2 = 0;for (int i = 4; i <= n; i++) {tmp1 = res;tmp2 = pre;res = res + prepre;pre = tmp1;prepre = tmp2;}return res;}public static int c3(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2 || n == 3) {return n;}int[][] base = { { 1, 1, 0 }, { 0, 0, 1 }, { 1, 0, 0 } };int[][] res = matrixPower(base, n - 3);return 3 * res[0][0] + 2 * res[1][0] + res[2][0];}public static int[][] matrixPower(int[][] m, int p) {int[][] res = new int[m.length][m[0].length];for (int i = 0; i < res.length; i++) {res[i][i] = 1;}// res = 矩阵中的1int[][] t = m;// 矩阵1次方for (; p != 0; p >>= 1) {if ((p & 1) != 0) {res = product(res, t);}t = product(t, t);}return res;}// 两个矩阵乘完之后的结果返回public static int[][] product(int[][] a, int[][] b) {int n = a.length;int m = b[0].length;int k = a[0].length; // a的列数同时也是b的行数int[][] ans = new int[n][m];for(int i = 0 ; i < n; i++) {for(int j = 0 ; j < m;j++) {for(int c = 0; c < k; c++) {ans[i][j] += a[i][c] * b[c][j];}}}return ans;}public static void main(String[] args) {int n = 19;System.out.println(c1(n));System.out.println(c2(n));System.out.println(c3(n));System.out.println("===");}}

题目四、给定一个数N,想象只由0和1两种字符,组成的所有长度为N的字符串 如果某个字符串,任何0字符的左边都有1紧挨着,认为这个字符串达标 返回有多少达标的字符串

通过观察我们发现,这不就是 初始值为 1 和 2  的斐波那契数列嘛。代码也很简单,就直接给大家了。

public class FibonacciProblem {public static int[][] matrixPower(int[][] m, int p) {int[][] res = new int[m.length][m[0].length];for (int i = 0; i < res.length; i++) {res[i][i] = 1;}// res = 矩阵中的1int[][] t = m;// 矩阵1次方for (; p != 0; p >>= 1) {if ((p & 1) != 0) {res = product(res, t);}t = product(t, t);}return res;}// 两个矩阵乘完之后的结果返回public static int[][] product(int[][] a, int[][] b) {int n = a.length;int m = b[0].length;int k = a[0].length; // a的列数同时也是b的行数int[][] ans = new int[n][m];for(int i = 0 ; i < n; i++) {for(int j = 0 ; j < m;j++) {for(int c = 0; c < k; c++) {ans[i][j] += a[i][c] * b[c][j];}}}return ans;}public static int s1(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return n;}return s1(n - 1) + s1(n - 2);}public static int s2(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return n;}int res = 2;int pre = 1;int tmp = 0;for (int i = 3; i <= n; i++) {tmp = res;res = res + pre;pre = tmp;}return res;}public static int s3(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2) {return n;}int[][] base = { { 1, 1 }, { 1, 0 } };int[][] res = matrixPower(base, n - 2);return 2 * res[0][0] + res[1][0];}public static void main(String[] args) {int n = 19;System.out.println(s1(n));System.out.println(s2(n));System.out.println(s3(n));System.out.println("===");}}

这篇关于单调栈(续)、由斐波那契数列讲述矩阵快速降幂技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068834

相关文章

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

电脑报错cxcore100.dll丢失怎么办? 多种免费修复缺失的cxcore100.dll文件的技巧

《电脑报错cxcore100.dll丢失怎么办?多种免费修复缺失的cxcore100.dll文件的技巧》你是否也遇到过“由于找不到cxcore100.dll,无法继续执行代码,重新安装程序可能会解... 当电脑报错“cxcore100.dll未找到”时,这通常意味着系统无法找到或加载这编程个必要的动态链接库

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

如何关闭 Mac 触发角功能或设置修饰键? mac电脑防止误触设置技巧

《如何关闭Mac触发角功能或设置修饰键?mac电脑防止误触设置技巧》从Windows换到iOS大半年来,触发角是我觉得值得吹爆的MacBook效率神器,成为一大说服理由,下面我们就来看看mac电... MAC 的「触发角」功能虽然提高了效率,但过于灵敏也让不少用户感到头疼。特别是在关键时刻,一不小心就可能触

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误