文章MSM_metagenomics(五):共现分析

2024-06-16 23:44

本文主要是介绍文章MSM_metagenomics(五):共现分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

介绍

本教程是使用一个Python脚本来分析多种微生物(即strains, species, genus等)的共现模式。

数据

大家通过以下链接下载数据:

  • 百度网盘链接:https://pan.baidu.com/s/1f1SyyvRfpNVO3sLYEblz1A
  • 提取码: 请关注WX公zhong号_生信学习者_后台发送 复现msm 获取提取码

Python packages required

  • pandas >= 1.3.5
  • matplotlib >= 3.5.0
  • seaborn >= 0.11.2

Co-presence pattern analysis

使用step_curve_drawer.py 做共线性分析

  • 代码
#!/usr/bin/env python"""
NAME: step_curve_drawer.py
DESCRIPTION: This script is to analyze the co-prsense of multiple species in different categories,by drawing step curves.
"""import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sys
import argparse
import textwrapdef read_args(args):# This function is to parse argumentsparser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,description = textwrap.dedent('''\This program is to do draw step curves to analyze co-presense of multiple species in different groups.'''),epilog = textwrap.dedent('''\examples:step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>'''))parser.add_argument('--abundance_table',nargs = '?',help = 'Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.',type = str,default = None)parser.add_argument('--variable',nargs = '?',help = 'Specify the header of the variable in the metadata table you want to assess. For example, \[Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].',type = str,default = None)parser.add_argument('--minimum_abundance',nargs = '?',help = 'Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default',type = float,default = 0.0)parser.add_argument('--species_number',nargs = '?',help = 'Specify the total number of multiple species in the analysis.',type = int)parser.add_argument('--output',nargs = '?',help = 'Specify the output figure name.',type = str,default = None)parser.add_argument('--palette',nargs = '?',help = 'Input a tab-delimited mapping file where values are group names and keys are color codes.',type = str,default = None)return vars(parser.parse_args())class PandasDealer:"""This is an object for dealing pandas dataframe."""def __init__(self, df_):self.df_ = df_def read_csv(self):# Ths fucntion will read tab-delimitted file into a pandas dataframe.return pd.read_csv(self.df_, sep = '\t', index_col = False, low_memory=False)def rotate_df(self):# this function is to rotate the metaphlan-style table into tidy dataframe to ease searching work,df_ = self.read_csv()df_rows_lists = df_.values.tolist()rotated_df_dict = {df_.columns[0]: df_.columns[1:]}for i in df_rows_lists:rotated_df_dict[i[0]] = i[1:]rotated_df = pd.DataFrame.from_dict(rotated_df_dict)return rotated_dfclass CopEstimator:def __init__(self, sub_df_md):self.sub_df_md = sub_df_md # sub_df_md: a subset of dataframe which contains only a group of species one wants to do co-presence analysis.def make_copresense_df(self, factor, total_species_nr, threshold = 0.0):# factor: the factor you want to assess the category percentage.# total_species_nr: specify the total number of species you want to do co-presense analysis.rotated_df = PandasDealer(self.sub_df_md)rotated_df = rotated_df.rotate_df()cols = rotated_df.columns[-total_species_nr: ].to_list() categories = list(set(rotated_df[factor].to_list()))copresense = []cate_name = []ratios = []for c in categories:sub_df = rotated_df[rotated_df[factor] == c]species_group_df = sub_df[cols]species_group_df = species_group_df.apply(pd.to_numeric)species_group_df['total'] = species_group_df[cols].gt(threshold).sum(axis=1)for i in range(1, total_species_nr + 1):ratio = count_non_zero_rows(species_group_df, i)copresense.append(i)cate_name.append(c)ratios.append(ratio)return pd.DataFrame.from_dict({"copresense": copresense,factor: cate_name,"percentage": ratios})def count_non_zero_rows(df_, nr):total_rows = len(df_.index)sub_df = df_[df_['total'] >= nr]ratio = len(sub_df.index)/total_rowsreturn ratioclass VisualTools:def __init__(self, processed_df, factor):self.processed_df = processed_dfself.factor = factordef step_curves(self, opt_name, palette = None):categories = list(set(self.processed_df[self.factor].to_list()))if palette:palette_dict = {i.rstrip().split('\t')[0]: i.rstrip().split('\t')[1] for i in open(palette).readlines()}for c in categories:sub_df = self.processed_df[self.processed_df[self.factor] == c]plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c, color = palette_dict[c])else:for c in categories:sub_df = self.processed_df[self.processed_df[self.factor] == c]plt.step(sub_df["percentage"]*100, sub_df["copresense"], label = c)plt.title("Number of species in an individual if present")plt.xlabel("Percentage")plt.ylabel("Co-presense")plt.legend(title = self.factor)plt.savefig(opt_name, bbox_inches = "tight")if __name__ == "__main__":pars = read_args(sys.argv)cop_obj = CopEstimator(pars['abundance_table'])p_df = cop_obj.make_copresense_df(pars['variable'], pars['species_number'], pars['minimum_abundance'])vis_obj = VisualTools(p_df, pars['variable'])vis_obj.step_curves(pars['output'], palette = pars['palette'])
  • 用法
usage: step_curve_drawer.py [-h] [--abundance_table [ABUNDANCE_TABLE]] [--variable [VARIABLE]] [--minimum_abundance [MINIMUM_ABUNDANCE]] [--species_number [SPECIES_NUMBER]] [--output [OUTPUT]][--palette [PALETTE]]This program is to do draw step curves to analyze co-presense of multiple species in different groups.optional arguments:-h, --help            show this help message and exit--abundance_table [ABUNDANCE_TABLE]Input the MetaPhlAn4 abundance table which contains only a group of species one wants to analyze their co-presense state, with metadata being wedged.--variable [VARIABLE]Specify the header of the variable in the metadata table you want to assess. For example, [Diet] variable columns has three categries - [vegan]/[Flexitarian]/[Omnivore].--minimum_abundance [MINIMUM_ABUNDANCE]Specify the minimum abundance used for determining presense. note: [0, 100] and [0.0] by default--species_number [SPECIES_NUMBER]Specify the total number of multiple species in the analysis.--output [OUTPUT]     Specify the output figure name.--palette [PALETTE]   Input a tab-delimited mapping file where values are group names and keys are color codes.examples:python step_curve_drawer.py --abundance_table <abundance_table_w_md.tsv> --variable <variable_name> --species_number <nr_sps> --output <output.svg>

为了演示step_curve_drawer.py的使用,我们将绘制基于metaphlan相对丰度表特定于Segatalla copri(之前称为Prevotella copri)的八个谱系:./data/mpa4_pcopri_abundances_md.tsv的共现模式,这些数据来自MSMNon-MSM人群。MSMNon-MSM样本将使用自定义颜色进行标记,颜色分配来自一个颜色映射文件color map file: ./data/copresence_color_map.tsv

python step_curve_drawer.py \--abundance_table mpa_pcopri_abundances_md.tsv \--variable sexual_orientation \--species_number 8 \--palette copresence_color_map.tsv \--output copresence_plot.png

请添加图片描述

这篇关于文章MSM_metagenomics(五):共现分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067885

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据