2024年大数据领域的主流分布式计算框架有哪些

2024-06-16 21:44

本文主要是介绍2024年大数据领域的主流分布式计算框架有哪些,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Spark

适用场景

以批处理闻名,有专门用于机器学习的相关类库进行复杂的计算,有SparkSQL可以进行简单的交互式查询,也可以使用DataSet,RDD,DataFrame进行复杂的ETL操作。

关键词

  • 处理数据量大
  • 批计算
  • 微批计算(可以理解成支持流计算)
  • 机器学习(丰富的类库)
  • SQL查询(操作简单)
  • 内存计算(计算效率高,相对MapReduce而言)
  • 内存开销大(通过SparkConf配置driver/executor参数,详见Spark内存管理模型,主要依赖于JVM进行内存回收)
  • 抽象出了RDD进行操作,开发相对简单,又可以写比SQL复杂的ETL操作

社区活跃程度:非常活跃

近一年,2023.6至2024.6,大约每周70个commit左右
在这里插入图片描述

Apache Flink

适用场景

具有高吞吐量、低延迟、容错性强等特点。比如实时告警系统,日志实时分析,金融交易异常检测。

关键词

  • 流计算(天生设计是为了进行流计算,不像Spark通过微批来实现流计算)
  • 事件驱动,响应快
  • 流批一体,通过统一的编程模型,可以实现开发一套代码,同时进行流处理、批处理
  • 数据集成,Flink支持多种数据源,如Kafka,HDFS,Cassandra,ElasticSearch

社区活跃程度:活跃

近一年,2023.6至2024.6,大约每周30个commit左右
在这里插入图片描述

Apache Storm

适用场景

具有高吞吐量、低延迟、容错性强等特点。比如实时告警系统,日志实时分析,金融交易异常检测。

关键词

  • 流计算,实时处理
  • 可靠性和容错性,节点故障自动重启和恢复任务
  • 水平扩展
  • 数据集成,支持多种数据源,如Kafka,HDFS,Cassandra

社区活跃程度:不活跃

近一年,2023.6至2024.6,大约每周不到10个commit
在这里插入图片描述

Apache Beam

适用场景

beam侧重点是一种编程模型,编写一次,可以运行在不同的流批引擎,有点像Flink提供的流批一体能力。减轻了开发人员学习各个引擎的特点,调优方法,让开发人员聚焦于业务逻辑。如果更侧重于性能,那毫不犹豫地应该选择具体的引擎比如Spark,Flink。但如果是为了更加通用的实现业务逻辑,可以使用Beam,避免将大量时间花费对各个引擎的学习。

关键词

  • 统一的编程模型:用于定义和执行大规模的数据处理任务。它旨在提供一种通用的编程接口,可以在不同的执行引擎上运行
  • 批处理和流处理:提供统一的编程模型来处理有界和无界的数据集。
  • 跨平台执行:Beam 的跨平台执行能力使得用户可以选择最适合其需求的执行引擎,并在不同执行引擎之间轻松迁移。
  • 窗口化和触发器:Beam 的窗口化和触发器机制使得处理无界数据流更加灵活和高效,适用于实时数据处理和分析。

社区活跃程度:活跃

近一年,2023.6至2024.6,大约每周50个commit
在这里插入图片描述

总结

就以上介绍的4个框架来说。
如果要进行机器学习,毫不犹豫地选择Spark。
如果不需要流计算,或者流计算要求不高,可以使用Spark,比Flink发展更成熟。
如果业务场景明确需要流计算(实时,低延迟,高吞吐量),毫不犹豫地选择Flink。
如果想聚焦业务逻辑,对性能要求不高,可以使用Beam。
Storm几乎可以说完全被Flink超越了,社区活跃程度Flink远超过Storm。从性能上来看,可以见美团技术写的这篇博客(https://tech.meituan.com/2017/11/17/flink-benchmark.html)该篇文章对Flink和Storm进行了性能测试,从不同场景,数据量进行了测试。如果没有历史包袱,从头选择流处理框架,可以毫不犹豫地选择Flink。

这篇关于2024年大数据领域的主流分布式计算框架有哪些的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067633

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram