【数学与算法】KMeans聚类代码

2024-06-16 21:18

本文主要是介绍【数学与算法】KMeans聚类代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KMeans聚类是根据各点距离聚类中心的距离来把所有点分类到不同类别的无监督算法。

对于聚类,就是两点:

  • 1.分类所有样本点:遍历每个数据样本点,分别计算该样本点与K个聚类中心的距离,把该样本点的类别重新分类为距离最小的那一类。
  • 2.更新聚类中心:所有样本点都按第一步重新分类后,把各类别的点重新计算聚类中心(求平均值的方法),更新K个类别的聚类中心值。
  • 3.重复前面两步,直到聚类中心点更新幅度小于阈值,或者达到迭代次数,或者所有样本点的类别都不再改变,或者他们几者组合起来,就停止迭代。

它适合分类一堆一堆的点:见下图中左边的三堆点。
不适合对几条曲线组成的点进行分类,见下图的右边三条线

以一条曲线的起点和终点为例:一条曲线特别长,他的起点和终点之间的距离可能也会特别大,因此,通过欧氏距离进行聚类的话,会出现别的曲线上的点更接近他的起点和终点的情况,那么起点和终点可能会和其他曲线很靠近的点聚类成一类。因此最终的分类效果肯定是很差。
所以,理解了聚类的原理,就知道了他的适用范围,不会在不能使用聚类的地方尝试使用聚类方法。

在这里插入图片描述


代码:

下面例子用kmeans分类一系列三维空间点。
头文件:

#pragma once
#include <cstring>
// #include <fstream>
#include <vector>struct Point_3D {float x;float y;float z;Point_3D operator=(Point_3D point) {x = point.x;y = point.y;z = point.z;}
};
typedef std::vector<Point_3D> Point3DVct;class KMeans {public:int m_k;  // k个类别Point3DVct input_point3D_vct_;          //要聚类的点云std::vector<Point3DVct> k_points_vct_;  // K类,每一类存储若干点Point3DVct k_center_point_vct_;         //每个类的中心KMeans() { m_k = 0; }inline void SetK(int k_) {m_k = k_;k_points_vct_.resize(m_k);}//设置输入点bool SetInput(const Point3DVct &input_points, Point3DVct &o_points);//初始化最初的K个类的中心bool InitKCenter(Point3DVct &K_center_point_vct);//聚类bool Cluster(const Point3DVct &input_points,std::vector<Point3DVct> &k_points_vct);//更新K类的中心bool UpdateGroupCenter(std::vector<Point3DVct> &K_points_vct,Point3DVct &centers);//计算两个点间的欧氏距离float DistBetweenPoints(const Point_3D &p1, const Point_3D &p2);//是否存在中心点移动,用来判断分类结果是否已收敛bool ExistCenterShift(Point3DVct &prev_center, Point3DVct &cur_center);
};

源文件:

#include "k_means.h"#include <math.h>
// #include <stdlib.h>
#include <bits/stdc++.h>
#include <time.h>#include <iostream>const float DELTA = 0.001;bool KMeans::InitKCenter(Point3DVct &K_center_point_vct) {if (m_k == 0) {std::cout << "在此之前必须要调用setK()函数" << std::endl;return false;}k_center_point_vct_.resize(m_k);for (size_t i = 0; i < m_k; ++i) {k_center_point_vct_[i] = K_center_point_vct[i];}return true;
}bool KMeans::SetInput(const Point3DVct &input_points, Point3DVct &o_points) {for (int i = 0; i < input_points.size(); ++i) {Point_3D p = input_points[i];o_points.push_back(p);}return true;
}bool KMeans::Cluster(const Point3DVct &input_points,std::vector<Point3DVct> &k_points_vct) {Point3DVct input_point3D_vct;SetInput(input_points, input_point3D_vct);Point3DVct v_center(k_center_point_vct_.size());do {for (size_t i = 0, pntCount = input_point3D_vct.size(); i < pntCount; ++i) {float min_dist = 10000000000;int point_class = 0;for (size_t j = 0; j < m_k; ++j) {float dist =DistBetweenPoints(input_point3D_vct[i], k_center_point_vct_[j]);if (min_dist - dist > 0.000001) {min_dist = dist;point_class = j;}}k_points_vct_[point_class].push_back(input_point3D_vct[i]);}//保存上一次迭代的中心点for (size_t i = 0; i < k_center_point_vct_.size(); ++i) {v_center[i] = k_center_point_vct_[i];}if (!UpdateGroupCenter(k_points_vct_, k_center_point_vct_)) {return false;}if (!ExistCenterShift(v_center, k_center_point_vct_)) {k_points_vct = k_points_vct_;break;}for (size_t i = 0; i < m_k; ++i) {for (int j = 0; j < k_points_vct_[i].size(); ++j) {const Point_3D &p = k_points_vct_[i][j];std::cout << "x= " << p.x << ",   y= " << p.y << ",   z= " << p.z<< " ,class: " << i << std::endl;}}std::cout << "--------------------- " << std::endl;for (size_t i = 0; i < m_k; ++i) {k_points_vct_[i].clear();}} while (true);return true;
}// 计算两个点之间的距离
float KMeans::DistBetweenPoints(const Point_3D &p1, const Point_3D &p2) {float dist = 0;float x_diff = 0, y_diff = 0, z_diff = 0;x_diff = p1.x - p2.x;y_diff = p1.y - p2.y;z_diff = p1.z - p2.z;dist = sqrt(x_diff * x_diff + y_diff * y_diff + z_diff * z_diff);return dist;
}bool KMeans::UpdateGroupCenter(std::vector<Point3DVct> &K_points_vct,Point3DVct &centers) {if (centers.size() != m_k) {std::cout << "类别的个数不为K" << std::endl;return false;}for (size_t i = 0; i < m_k; ++i) {float x = 0, y = 0, z = 0;size_t point_num_in_this_class = K_points_vct[i].size();// 遍历每个类别的数据,每次遍历都把一类数据的x全加起来,求平均数,赋值给该类别的中心x;// y全加起来,求平均数,赋值给该类别的中心y;// z全加起来,求平均数,赋值给该类别的中心zfor (size_t j = 0; j < point_num_in_this_class; ++j) {x += K_points_vct[i][j].x;y += K_points_vct[i][j].y;z += K_points_vct[i][j].z;}x /= point_num_in_this_class;y /= point_num_in_this_class;z /= point_num_in_this_class;centers[i].x = x;centers[i].y = y;centers[i].z = z;}return true;
}//是否存在中心点移动
// 就是说遍历K个类别的中心点,若上一次和本次更新的中心点距离变化大于一定值就表示正在更新更新了;
// 否则,就表示不再更新迭代停止;
// 只要有一个返回值大于阈值,就表示有数据更新,不能停止迭代。如果所有个类别的中心距离都小于某阈值,就表示更新停止.
bool KMeans::ExistCenterShift(Point3DVct &prev_center, Point3DVct &cur_center) {for (size_t i = 0; i < m_k; ++i) {float dist = DistBetweenPoints(prev_center[i], cur_center[i]);if (dist > DELTA) {return true;}}return false;
}

这篇关于【数学与算法】KMeans聚类代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067567

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(