矩阵的迹(Trace)

2024-06-16 14:36
文章标签 trace 矩阵的迹

本文主要是介绍矩阵的迹(Trace),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩阵的迹(Trace)

flyfish

矩阵的迹(Trace)是指一个方阵(即行数和列数相同的矩阵)对角线元素之和。就是在一个正方形的数字表格里,沿着从左上角到右下角的对角线,把这条线上所有的数字加起来,得到的和就是这个矩阵的迹。

简单例子
假设我们有一个3x3的矩阵:

( 1 2 3 4 5 6 7 8 9 ) \begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} 147258369
矩阵的迹就是对角线上的元素之和,也就是1、5和9的和:
Tr ( A ) = 1 + 5 + 9 = 15 \text{Tr}(A) = 1 + 5 + 9 = 15 Tr(A)=1+5+9=15

矩阵的迹等于其特征值之和

计算矩阵的迹
假设我们有一个2x2的矩阵:
( 4 1 2 3 ) \begin{pmatrix}4 & 1 \\ 2 & 3 \end{pmatrix} (4213)

import numpy as np
# 定义矩阵
A = np.array([[4, 1], [2, 3]])
# 计算矩阵的迹
trace_A = np.trace(A)
# 计算矩阵的特征值
eigenvalues_A = np.linalg.eigvals(A)
# 计算特征值之和
sum_eigenvalues = np.sum(eigenvalues_A)
print(trace_A, eigenvalues_A, sum_eigenvalues)
7 [5. 2.] 7.0

矩阵 A A A 的特征值通过解矩阵的特征多项式得到。具体步骤如下:

步骤:

  1. 特征多项式:定义特征值 λ \lambda λ 为矩阵 A A A 的特征值,如果存在非零向量 v \mathbf{v} v 使得 A v = λ v A \mathbf{v} = \lambda \mathbf{v} Av=λv。这可以转换为以下方程:
    ( A − λ I ) v = 0 (A - \lambda I) \mathbf{v} = 0 (AλI)v=0
    其中, I I I 是单位矩阵。
  2. 行列式:为了有非零解,矩阵 ( A − λ I ) (A - \lambda I) (AλI) 的行列式必须为零,即:
    det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0
  3. 解多项式:上面的行列式是一个关于 λ \lambda λ 的多项式方程,称为特征多项式。解这个多项式方程可以得到矩阵的特征值。

具体例子

对矩阵 A = ( 4 1 2 3 ) A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} A=(4213),我们来计算特征值:

  1. 特征多项式
    A − λ I = ( 4 1 2 3 ) − λ ( 1 0 0 1 ) = ( 4 − λ 1 2 3 − λ ) A - \lambda I = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} AλI=(4213)λ(1001)=(4λ213λ)
  2. 行列式
    det ⁡ ( A − λ I ) = det ⁡ ( 4 − λ 1 2 3 − λ ) = ( 4 − λ ) ( 3 − λ ) − 2 ⋅ 1 \det(A - \lambda I) = \det \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} = (4 - \lambda)(3 - \lambda) - 2 \cdot 1 det(AλI)=det(4λ213λ)=(4λ)(3λ)21
  3. 展开多项式
    ( 4 − λ ) ( 3 − λ ) − 2 = 12 − 4 λ − 3 λ + λ 2 − 2 = λ 2 − 7 λ + 10 (4 - \lambda)(3 - \lambda) - 2 = 12 - 4\lambda - 3\lambda + \lambda^2 - 2 = \lambda^2 - 7\lambda + 10 (4λ)(3λ)2=124λ3λ+λ22=λ27λ+10
  4. 求根
    λ 2 − 7 λ + 10 = 0 \lambda^2 - 7\lambda + 10 = 0 λ27λ+10=0
    求解这个二次方程可以得到特征值:
    λ = 7 ± 49 − 40 2 = 7 ± 9 2 = 7 ± 3 2 \lambda = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm \sqrt{9}}{2} = \frac{7 \pm 3}{2} λ=27±4940 =27±9 =27±3

所以特征值是:
λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \lambda_2 = 2 λ1=5,λ2=2

  1. 线性变换的固有尺度:特征值描述了线性变换在某些方向上的缩放因子。如果 λ \lambda λ 是矩阵 A A A 的特征值,意味着存在一个向量 v \mathbf{v} v 使得 A v = λ v A \mathbf{v} = \lambda \mathbf{v} Av=λv。向量 v \mathbf{v} v 在变换 A A A 下只会被拉伸或压缩,而不会改变方向。
  2. 对角化:特征值可以用来对矩阵进行对角化。如果矩阵 A A A 可以对角化,那么 A = P D P − 1 A = PDP^{-1} A=PDP1,其中 D D D 是对角矩阵,对角线上的元素是 A A A 的特征值。对角化在简化矩阵的高次幂和指数矩阵计算中非常有用。

特征值提供了缩放因子的信息,而特征向量提供了变换方向的信息。也可以从特征向量的角度看特征值。

使用特征值和特征向量对矩阵进行对角化

假设我们有以下矩阵 A A A
( 4 1 2 3 ) \begin{pmatrix}4 & 1 \\ 2 & 3 \end{pmatrix} (4213)

步骤:

  1. 计算矩阵 ( A ) 的特征值。
  2. 计算与特征值对应的特征向量。
  3. 组成矩阵 ( P ) 和对角矩阵 ( D )。
  4. 验证 A = P D P − 1 A = PDP^{-1} A=PDP1

1. 计算特征值

特征值 (\lambda) 满足:
det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0
其中 ( I ) 是单位矩阵:
det ⁡ ( 4 − λ 1 2 3 − λ ) = ( 4 − λ ) ( 3 − λ ) − 2 ⋅ 1 = λ 2 − 7 λ + 10 \det \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} = (4 - \lambda)(3 - \lambda) - 2 \cdot 1 = \lambda^2 - 7\lambda + 10 det(4λ213λ)=(4λ)(3λ)21=λ27λ+10
解得特征值 λ 1 = 5 \lambda_1 = 5 λ1=5 λ 2 = 2 \lambda_2 = 2 λ2=2

2. 计算特征向量

对于 λ 1 = 5 \lambda_1 = 5 λ1=5
( A − 5 I ) v = 0 (A - 5I)\mathbf{v} = 0 (A5I)v=0
( 4 − 5 1 2 3 − 5 ) ( v 1 v 2 ) = ( − 1 1 2 − 2 ) ( v 1 v 2 ) = 0 \begin{pmatrix} 4 - 5 & 1 \\ 2 & 3 - 5 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0 (452135)(v1v2)=(1212)(v1v2)=0
解得特征向量:
v 1 = ( 1 1 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v1=(11)
对于 λ 2 = 2 \lambda_2 = 2 λ2=2
( A − 2 I ) v = 0 (A - 2I)\mathbf{v} = 0 (A2I)v=0
( 4 − 2 1 2 3 − 2 ) ( v 1 v 2 ) = ( 2 1 2 1 ) ( v 1 v 2 ) = 0 \begin{pmatrix} 4 - 2 & 1 \\ 2 & 3 - 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0 (422132)(v1v2)=(2211)(v1v2)=0
解得特征向量:
v 2 = ( − 1 2 ) \mathbf{v}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} v2=(12)

3. 组成矩阵 ( P ) 和对角矩阵 ( D )

特征向量组成矩阵 ( P ):
P = ( 1 − 1 1 2 ) P = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} P=(1112)
特征值组成对角矩阵 ( D ):
D = ( 5 0 0 2 ) D = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} D=(5002)

4. 验证 A = P D P − 1 A = PDP^{-1} A=PDP1

我们计算 ( P^{-1} ):
P − 1 = 1 det ⁡ ( P ) ( 2 1 − 1 1 ) = 1 ( 1 ⋅ 2 − ( − 1 ) ⋅ 1 ) ( 2 1 − 1 1 ) = ( 2 / 3 1 / 3 − 1 / 3 1 / 3 ) P^{-1} = \frac{1}{\det(P)} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \frac{1}{(1 \cdot 2 - (-1) \cdot 1)} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2/3 & 1/3 \\ -1/3 & 1/3 \end{pmatrix} P1=det(P)1(2111)=(12(1)1)1(2111)=(2/31/31/31/3)
现在我们验证 A = P D P − 1 A = PDP^{-1} A=PDP1
P D P − 1 = ( 1 − 1 1 2 ) ( 5 0 0 2 ) ( 2 / 3 1 / 3 − 1 / 3 1 / 3 ) PDP^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2/3 & 1/3 \\ -1/3 & 1/3 \end{pmatrix} PDP1=(1112)(5002)(2/31/31/31/3)
首先计算 ( PD ):
P D = ( 1 − 1 1 2 ) ( 5 0 0 2 ) = ( 5 − 2 5 4 ) PD = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ 5 & 4 \end{pmatrix} PD=(1112)(5002)=(5524)
然后计算 P D ⋅ P − 1 PD \cdot P^{-1} PDP1
P D ⋅ P − 1 = ( 5 − 2 5 4 ) ( 2 / 3 1 / 3 − 1 / 3 1 / 3 ) = ( ( 5 ⋅ 2 / 3 + ( − 2 ) ⋅ ( − 1 / 3 ) ) ( 5 ⋅ 1 / 3 + ( − 2 ) ⋅ 1 / 3 ) ( 5 ⋅ 2 / 3 + 4 ⋅ ( − 1 / 3 ) ) ( 5 ⋅ 1 / 3 + 4 ⋅ 1 / 3 ) ) = ( 4 1 2 3 ) PD \cdot P^{-1} = \begin{pmatrix} 5 & -2 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} 2/3 & 1/3 \\ -1/3 & 1/3 \end{pmatrix} = \begin{pmatrix} (5 \cdot 2/3 + (-2) \cdot (-1/3)) & (5 \cdot 1/3 + (-2) \cdot 1/3) \\ (5 \cdot 2/3 + 4 \cdot (-1/3)) & (5 \cdot 1/3 + 4 \cdot 1/3) \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} PDP1=(5524)(2/31/31/31/3)=((52/3+(2)(1/3))(52/3+4(1/3))(51/3+(2)1/3)(51/3+41/3))=(4213)
验证得 P D P − 1 = A PDP^{-1} = A PDP1=A

这篇关于矩阵的迹(Trace)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066709

相关文章

用异步序列优雅的监听 SwiftData 2.0 中历史追踪记录(History Trace)的变化

概述 WWDC 24 一声炮响为我们送来 Swift 6.0 的同时,也颇为“低调”的推出了 SwiftData 2.0。在新版本的 SwiftData 中,苹果为其新增了多个激动人心的新特性,其中就包括历史记录追踪(History Trace)。 不过,历史记录追踪目前看起来似乎有些“白璧微瑕”,略微让人有些不爽。在这里就让我们看看如何利用 Swift 结构化并发中的异步序列(Asy

数学基础 -- 线性代数之矩阵的迹

矩阵的迹 什么是矩阵的迹? 矩阵的迹(Trace of a Matrix)是线性代数中的一个基本概念,定义为一个方阵主对角线上元素的总和。矩阵的迹在许多数学和物理应用中都起着重要作用,例如在矩阵分析、量子力学、统计学和系统理论中。 矩阵迹的定义 对于一个 n × n n \times n n×n 的方阵 A A A: A = ( a 11 a 12 ⋯ a 1 n a 21 a 2

kill -3 pid打印trace

http://blog.csdn.net/guoqifa29/article/details/48653579 $chmod 777 /data/anr $rm /data/anr/traces.txt $ps $kill -3 PID adbpull data/anr/traces.txt ./mytraces.txt 或者cat traces.txt

CANoe Trace界面介绍及Trace界面log显示不全解决方法

文章目录 一、前言1.Configuration2.显示模式的切换3.Title信息4.保存报文5.Detail View6.差分分析工具 二、问题现象:CANoe Trace面板log显示不全三、解决方法1.调整trace window的显示最大值,方法如图2.重启工程,重新加载log数据。 一、前言 Trace界面用于监控报文的界面,此界面包含很多功能,例如过滤报文,比

cutils-trace(18431): Error opening trace file: No such file or directory

在使用sqlLite数据库时程序报错: 原因如下: 1、android api 的版本和模拟器的版本不一致导致的 2、程序有些地方没注意, sqllite建立时使用的私有数据库,而别的程序又要 新建或者是使用它,出错 如图:sss.db,MOOE_PRIVATE为私有数据库。 注意 望采纳

矩阵的迹以及迹对矩阵求导

ref: https://blog.csdn.net/u012421852/article/details/79594933 矩阵的迹概念         矩阵的迹 就是 矩阵的主对角线上所有元素的和。         矩阵A的迹,记作tr(A),可知tra(A)=∑aii,1<=i<=n。 定理:tr(AB) = tr(BA) 证明 定理:tr(ABC) = tr(CAB) =

PyTorch模型_trace实战:深入理解与应用

pytorch使用trace模型 1、使用trace生成torchscript模型2、使用trace的模型预测 1、使用trace生成torchscript模型 def save_trace(model, input, save_path):traced_script_model = torch.jit.trace(model, input)<

分布式trace实现系统治理

日志拉取客户端 logstash、flume 日志存储中间件缓存: kafka 日志实时处理 flink,storm,spark都可以 处理结果存放: es,hbase,redis 业内实现 开源的 Open Tracing openTracing是为了解决不同系统之间的兼容性设计的,现在也成为了各个第三方Trace系统的依赖的规范。 Twitter的 Zipin 阿里

nsight system GUI——cuda trace

官方资料 User Guide — nsight-systems 2024.4 documentation (nvidia.com)

tracetcp下载 安装 使用 网络工具 windows trace工具 tcp协议

省流 Tracetcp是一个类似于Tracert的工具,使用如下: 1. 安装winpcap , 下载链接:WinPcap · Download 2.下载tracetcp软件,下载链接: https://github.com/0xcafed00d/tracetcp/releases 命令:tracetcp www.baidu.com:80 -n  详细 完整文档请访问:http:/