XGBoost预测及调参过程(+变量重要性)--血友病计数数据

本文主要是介绍XGBoost预测及调参过程(+变量重要性)--血友病计数数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

         所使用的数据是血友病数据,如有需要,可在主页资源处获取,数据信息如下:

ddcdd574478b441d91e491390799e8da.png

读取数据及数据集区分

        数据预处理及区分数据集代码如下(详细预处理说明见上篇文章--随机森林):

import pandas as pd
import numpy as np
hemophilia = pd.read_csv('D:/my_files/data.csv')  #读取数据#数值变量化为分类变量
hemophilia['hiv']=hemophilia['hiv'].astype(object) 
hemophilia['factor']=hemophilia['factor'].astype(object)
new_hemophilia=pd.get_dummies(hemophilia,drop_first=True)   #drop_first=True--删去一列,如hiv,处理后为两列,都是01表示,但只保留一列就足够表示两种状态
new_data=new_hemophilia
from sklearn.model_selection import train_test_split
x = new_data.drop(['deaths'],axis=1)   #删去标签列
X_train, X_test, y_train, y_test = train_test_split(x, new_data.deaths, test_size=0.3, random_state=0)  #区分数据集,70%训练集,30%测试集

默认参数XGBoost

        先使用默认参数XGBoost进行预测,输出预测均方误差为0.334.

from xgboost import XGBRegressor
from sklearn.model_selection import GridSearchCV
xgb_model = XGBRegressor(random_state=0)  #random_state=0是随机种子数
xgb_model.fit(X_train, y_train)
y_pred = xgb_model.predict(X_test)
print('MSE of xgb: %.3f' %metrics.mean_squared_error(y_test, y_pred))
'''MSE of xgb: 0.334
'''

XGBoost调参

        接下来对XGBoost进行调参,XGBoost参数很多,一般对少数参数进行调整就可以得到不错的效果,所以这里只对'max_depth','min_child_weight','gamma'这三个参数进行粗略调参,如果追求更加有效的调参结果,可以对多个参数逐一调参。调参后输出预测均方误差为0.287,已经有所下降,说明模型的预测效果已经得到了提升。

param_grid = {'max_depth':[1,2,3,4,5],'min_child_weight':range(10,70,10),'gamma':[i*0.01 for i in range(0,20,3)]}
GS = GridSearchCV(xgb_model,param_grid,scoring = 'neg_mean_squared_error',cv=5)
GS.fit(X_train, y_train)
GS.best_params_  #最佳参数组合#{'gamma': 0.15, 'max_depth': 3, 'min_child_weight': 68}xgb_model = XGBRegressor(gamma = 0.15, max_depth = 3, min_child_weight = 60, random_state=0)
xgb_model.fit(X_train, y_train)
y_pred = xgb_model.predict(X_test)
print('MSE of xgb: %.3f' %metrics.mean_squared_error(y_test, y_pred))
'''MSE of xgb: 0.287
'''

XGBoost变量重要性

        XGBoost和随机森林都能够输出变量重要性,代码如下:

import matplotlib.pyplot as plt
importances = list(xgb_model.feature_importances_)   #XGBoost
feature_list = list(x.columns)
feature_importances = [(feature, round(importance, 2)) for feature, importance in zip(feature_list, importances)]
feature_importances = sorted(feature_importances, key=lambda x: x[1], reverse=True)
f_list = []
importances_list = []
for i in range(0,8):feature = feature_importances[i][0]importances_r = feature_importances[i][1]f_list.append(feature),importances_list.append(importances_r)
x_values = list(range(len(importances_list)))
plt.figure(figsize=(14, 9))
plt.bar(x_values, importances_list, orientation='vertical')
plt.xticks(x_values, f_list, rotation=25, size =18)
plt.yticks(size =18)
plt.ylabel('Importance',size = 20)
plt.xlabel('Variable',size = 20)
plt.title('XGB Variable Importances',size = 22)
#plt.savefig('D:/files/xgb变量重要性.png', dpi=800)    #保存图片到指定位置 dpi--分辨率
plt.show()

63d57f3d881b494c9c82b321cef4ef92.png

        还可以输出图片对比预测结果和真实值的差异,代码及图片如下:

import matplotlib.pyplot as plt
y_test = y_test.reset_index(drop = True)
plt.plot(y_test,color="b",label = 'True')
plt.plot(y_pred,color="r",label = 'Prediction') 
plt.xlabel("index")  #x轴命名表示
plt.ylabel("deaths")  #y轴命名表示
plt.title("xgb Comparison between real and perdiction") 
plt.legend()  #增加图例
#plt.savefig('D:/my_files/xgb Comparison between real and perdiction.png', dpi = 500) #保存图片
plt.show()  #显示图片

5d065dbe99f747e68fc9b0d063c7a69c.png

 

这篇关于XGBoost预测及调参过程(+变量重要性)--血友病计数数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066395

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d