基于负相关误差函数的4集成BP神经网络matlab建模与仿真

2024-06-16 05:36

本文主要是介绍基于负相关误差函数的4集成BP神经网络matlab建模与仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

................................................................
while(Index<=Max_iteration)   Indexjj=1;     error2 = zeros(Len,KER);while(jj<=Len)         for k=1:No;d(k)=T(jj);  endfor i=1:NI;x(i)=P(jj,i);end%集成多个BP神经网络for bpj = 1:KER      for j=1:Nh%BP前向            net=0;              for i=1:NI                net=net+x(i)*W0(i,j,bpj); %加权和∑X(i)V(i)            endy(j)=1/(1+exp(-net));               endfor k=1:No             net=0;              for j=1:Nh                  net=net+y(j)*W(j,k,bpj);             end%输出值o(k)=1/(1+exp(-net));              endRRR(jj,1) = round(o);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%errortmp=0.0;         for k=1:No              errortmp=errortmp+(d(k)-(o(k)))^2;%传统的误差计算方法end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%error2(jj,bpj)=0.5*errortmp/No;         for k=1:No%BP反向计算          yitao(k)=(d(k)-o(k))*o(k)*(1-o(k));%偏导      endfor j=1:Nh         tem=0.0;         for k=1:No             tem=tem+yitao(k)*W(j,k,bpj);       endyitay(j)=tem*y(j)*(1-y(j));%偏导    endfor j=1:Nh%权值更新         for k=1:No              deltaW(j,k,bpj) = Learning_Rate*yitao(k)*y(j);            W(j,k,bpj)      = W(j,k,bpj)+deltaW(j,k,bpj);            endendfor i=1:NI         for j=1:Nh              deltaW0(i,j,bpj) = Learning_Rate*yitay(j)*x(i);            W0(i,j,bpj)      = W0(i,j,bpj)+deltaW0(i,j,bpj);             endendendjj=jj+1; end%BP训练结束     error = sum(mean(error2));  Index = Index+1;ERR   = [ERR,error]; 
end
.........................................................
05_035m

4.算法理论概述

       基于负相关误差函数(Negative Correlation Learning, NCL)的集成学习方法应用于BP(Backpropagation)神经网络,旨在通过训练多个相互独立且在预测上具有负相关的模型,提高整体模型的泛化能力和稳定性。这种方法结合了神经网络的强大表达能力和集成学习的思想,以提高预测精度和鲁棒性。

       集成学习是机器学习领域的一种重要策略,它通过组合多个弱学习器来构建一个强学习器。NCL在集成学习框架下的应用,特别是与BP神经网络结合时,其核心思想是促使每个神经网络模型学习到不同的模式,从而减少整体模型之间的错误相关性。当模型间的预测错误呈现负相关时,即一个模型在某些样本上犯错时,其他模型能在这些样本上正确预测,整个集成系统的错误率会显著降低。

      负相关误差函数的公式:

       可知,当λ=0时,后面的惩罚项为0,相当于是网络单独训练,也就是传统的集成方式,当λ取大于0的值时为负相关集成,所以,以下对λ取值分别为0和其他值进行比较.

       基于负相关误差函数的集成BP神经网络,通过鼓励模型间预测的负相关性,有效提升了模型的泛化能力。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于负相关误差函数的4集成BP神经网络matlab建模与仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065583

相关文章

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

SpringBoot如何集成Kaptcha验证码

《SpringBoot如何集成Kaptcha验证码》本文介绍了如何在Java开发中使用Kaptcha生成验证码的功能,包括在pom.xml中配置依赖、在系统公共配置类中添加配置、在控制器中添加生成验证... 目录SpringBoot集成Kaptcha验证码简介实现步骤1. 在 pom.XML 配置文件中2.

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}