航拍无人机像素坐标转世界坐标

2024-06-15 23:20

本文主要是介绍航拍无人机像素坐标转世界坐标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

已知相机参数(传感器宽度和高度、图像宽度和高度、焦距、相对航高、像主点坐标 ),在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,不知道哪个步骤有问题,望大家指正

二、代码
import numpy as np
import cv2
# 畸变校正
def undistort_pixel(pixel_x, pixel_y, sym_dist, dec_dist):
    k0,k1,k2,k3=sym_dist
    # k1, k2, p1, p2, k3 = sym_dist
    p1,p2,p3=dec_dist
    fx = focal_length_mm
    fy = focal_length_mm
    cx = xpoff_px
    cy = ypoff_px
    distCoeffs = np.array([k1, k2, p1, p2,k3])
    cameraMatrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    distorted_points = np.array([[pixel_x, pixel_y]], dtype=np.float32)
    undistorted_points = cv2.undistortPoints(distorted_points, cameraMatrix, distCoeffs)
    #################################################### 4\对图像去畸变
    img = cv2.imread('./images/100_0004_0001.JPG')
    img_undistored = cv2.undistort(img, cameraMatrix, distCoeffs)
    cv2.imwrite('./images/100_0004_00011.JPG', img_undistored)
    return undistorted_points[0][0][0], undistorted_points[0][0][1]
# 相机坐标转世界坐标
def camera_to_world_coordinates(cam_coords, pos):
    # 获取相机到世界的转换参数
    pos_x, pos_y, pos_z, roll, pitch, yaw = pos
    # 将角度转换为弧度
    roll = np.radians(roll)
    pitch = np.radians(pitch)
    yaw = np.radians(yaw)
    # 计算旋转矩阵
    R_roll = np.array([
        [1, 0, 0],
        [0, np.cos(roll), -np.sin(roll)],
        [0, np.sin(roll), np.cos(roll)]
    ])
    R_pitch = np.array([
        [np.cos(pitch), 0, np.sin(pitch)],
        [0, 1, 0],
        [-np.sin(pitch), 0, np.cos(pitch)]
    ])
    R_yaw = np.array([
        [np.cos(yaw), -np.sin(yaw), 0],
        [np.sin(yaw), np.cos(yaw), 0],
        [0, 0, 1]
    ])
    R = R_yaw @ R_pitch @ R_roll
    # 相机坐标转换到世界坐标
    cam_coords_homogeneous = np.array([cam_coords[0], cam_coords[1], -H, 1])
    world_coords = R @ cam_coords_homogeneous[:3] + np.array([pos_x, pos_y, pos_z])
    return world_coords
if __name__ == "__main__":


取消
首页
编程
手机
软件
硬件
安卓
苹果
手游
教程
平面
服务器
首页 > 脚本专栏 > python > python无人机航拍图片像素坐标
python实现无人机航拍图片像素坐标转世界坐标的示例代码
2024-06-12 10:42:38 作者:GIS从业者

已知相机参数在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,本文给大家分享实现脚本,感兴趣的朋友跟随小编一起看看吧
背景
已知相机参数(传感器宽度和高度、图像宽度和高度、焦距、相对航高、像主点坐标 ),在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,不知道哪个步骤有问题,望大家指正

脚本
import numpy as np
import cv2
# 畸变校正
def undistort_pixel(pixel_x, pixel_y, sym_dist, dec_dist):
    k0,k1,k2,k3=sym_dist
    # k1, k2, p1, p2, k3 = sym_dist
    p1,p2,p3=dec_dist
    fx = focal_length_mm
    fy = focal_length_mm
    cx = xpoff_px
    cy = ypoff_px
    distCoeffs = np.array([k1, k2, p1, p2,k3])
    cameraMatrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    distorted_points = np.array([[pixel_x, pixel_y]], dtype=np.float32)
    undistorted_points = cv2.undistortPoints(distorted_points, cameraMatrix, distCoeffs)
    #################################################### 4\对图像去畸变
    img = cv2.imread('./images/100_0004_0001.JPG')
    img_undistored = cv2.undistort(img, cameraMatrix, distCoeffs)
    cv2.imwrite('./images/100_0004_00011.JPG', img_undistored)
    return undistorted_points[0][0][0], undistorted_points[0][0][1]
# 相机坐标转世界坐标
def camera_to_world_coordinates(cam_coords, pos):
    # 获取相机到世界的转换参数
    pos_x, pos_y, pos_z, roll, pitch, yaw = pos
    # 将角度转换为弧度
    roll = np.radians(roll)
    pitch = np.radians(pitch)
    yaw = np.radians(yaw)
    # 计算旋转矩阵
    R_roll = np.array([
        [1, 0, 0],
        [0, np.cos(roll), -np.sin(roll)],
        [0, np.sin(roll), np.cos(roll)]
    ])
    R_pitch = np.array([
        [np.cos(pitch), 0, np.sin(pitch)],
        [0, 1, 0],
        [-np.sin(pitch), 0, np.cos(pitch)]
    ])
    R_yaw = np.array([
        [np.cos(yaw), -np.sin(yaw), 0],
        [np.sin(yaw), np.cos(yaw), 0],
        [0, 0, 1]
    ])
    R = R_yaw @ R_pitch @ R_roll
    # 相机坐标转换到世界坐标
    cam_coords_homogeneous = np.array([cam_coords[0], cam_coords[1], -H, 1])
    world_coords = R @ cam_coords_homogeneous[:3] + np.array([pos_x, pos_y, pos_z])
    return world_coords
if __name__ == "__main__":
    ####################################################基本参数
    # 传感器宽度和高度(毫米)
   sensor_width_mm = 12.83331744000000007588
    sensor_height_mm = 8.55554496000000064271
    # 图像宽度和高度(像素)
    image_width_px = 5472
    image_height_px = 3648
    # 焦距(毫米)
    focal_length_mm = 8.69244671863242679422
    # 焦距(米)
    focal_length_m = 8.69244671863242679422/1000
    # 相对航高(米)
    H=86.93
    #像主点坐标 (像素)
    xpoff_px=20.88973563438230485190
    ypoff_px=50.51977022866981315019
    #################################################### 1\计算空间分辨率
    # 传感器尺寸转换为米
    sensor_width_m = sensor_width_mm / 1000
    sensor_height_m = sensor_height_mm / 1000
    # 计算水平和垂直的 GSD
    GSD_x = (sensor_width_m/image_width_px) * (H / focal_length_m )
    GSD_y = (sensor_height_m /image_height_px) * (H / focal_length_m)
    # 水平和垂直方向的 GSD
    print("水平方向的 GSD:", GSD_x, "米/像素")
    print("垂直方向的 GSD:", GSD_y, "米/像素")
    #################################################### 2\给定像素坐标,计算相机坐标
    # 像素坐标
    oripixel_x = image_width_px
    oripixel_y = image_height_px
    # oripixel_x = image_width_px/2
    # oripixel_y = image_height_px/2
    # oripixel_x = 0
    # oripixel_y = 0
    pixel_x=oripixel_x-xpoff_px-image_width_px/2
    pixel_y=oripixel_y-ypoff_px-image_height_px/2
    # 计算相机坐标(假设无畸变)
    camera_x = pixel_x * GSD_x
    camera_y = pixel_y * GSD_y
    print("像素坐标 (", oripixel_x, ",", oripixel_y, ") 对应的相机坐标 (x, y): (", camera_x, "米, ", camera_y, "米)")
    #################################################### 3\计算畸变后坐标
    # 对称畸变系数
    sym_dist = [0, -0.00043396118129128110, 0.00000262222711982075, -0.00000001047488706013]
    # 径向畸变
    dec_dist = [0.00000205885592671873, -0.00000321714140091248, 0]
    # 进行畸变校正
    undistorted_camera_x, undistorted_camera_y = undistort_pixel(pixel_x, pixel_y, sym_dist, dec_dist)
    print("畸变校正后像素坐标 (", oripixel_x, ",", oripixel_y, ") 对应的相机坐标 (x, y): (", undistorted_camera_x, "米, ", undistorted_camera_y, "米)")
    #################################################### 4\计算世界坐标
    # POS数据
    pos = [433452.054688, 2881728.519704, 183.789696, 0.648220, -0.226028, 14.490357]
    # 计算世界坐标
    world_coords = camera_to_world_coordinates((undistorted_camera_x, undistorted_camera_y), pos)
    print("旋转平移变换后像素坐标 (", oripixel_x, ",", oripixel_y, ") 对应的世界坐标 (x, y): (", world_coords[0], "米, ", world_coords[1], "米)")
到此这篇关于python实现无人机航拍图片像素坐标转世界坐标的示例代码的文章就介绍到这了。

这篇关于航拍无人机像素坐标转世界坐标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064869

相关文章

内卷时代无人机培训机构如何做大做强

在当今社会,随着科技的飞速发展,“内卷”一词频繁被提及,反映了各行业竞争日益激烈的现象。对于无人机培训行业而言,如何在这样的时代背景下脱颖而出,实现做大做强的目标,成为每个培训机构必须深思的问题。以下是从八个关键方面提出的策略,旨在帮助无人机培训机构在内卷时代中稳步前行。 1. 精准定位市场需求 深入研究市场:通过市场调研,了解无人机行业的最新趋势、政策导向及未来发展方向。 明确目标

SW - 引入第三方dwg图纸后,修改坐标原点

文章目录 SW - 引入第三方dwg图纸后,修改坐标原点概述笔记设置图纸新原点END SW - 引入第三方dwg图纸后,修改坐标原点 概述 在solidworks中引入第三方的dwg格式图纸后,坐标原点大概率都不合适。 全图自动缩放后,引入的图纸离默认的原点位置差很多。 需要自己重新设置原点位置,才能自动缩放后,在工作区中间显示引入的图纸。 笔记 将dwg图纸拖到SW中

Differential Diffusion,赋予每个像素它应有的力量,以及在comfyui中的测试效果

🥽原论文要点 首先是原论文地址:https://differential-diffusion.github.io/paper.pdf 其次是git介绍地址:GitHub - exx8/differential-diffusion 感兴趣的朋友们可以自行阅读。 首先,论文开篇就给了一个例子: 我们的方法根据给定的图片和文本提示,以不同的程度改变图像的不同区域。这种可控性允许我们再现

三维激光扫描点云配准外业棋盘的布设与棋盘坐标测量

文章目录 一、棋盘标定板准备二、棋盘标定板布设三、棋盘标定板坐标测量 一、棋盘标定板准备 三维激光扫描棋盘是用来校准和校正激光扫描仪的重要工具,主要用于提高扫描精度。棋盘标定板通常具有以下特点: 高对比度图案:通常是黑白相间的棋盘格,便于识别。已知尺寸:每个格子的尺寸是已知的,可以用于计算比例和调整。平面标定:帮助校准相机和激光扫描仪之间的位置关系。 使用方法 扫描棋盘:

无人机执照拿到后怎么就业?方向有哪些?就业率如何?

无人机执照拿到后,就业方向广泛且多样,就业率也呈现出逐年上升的趋势。这主要得益于无人机技术的广泛应用和无人机市场的不断扩大。以下是对无人机执照持有者就业情况的详细分析: 就业方向 1. 无人机飞行操作: 无人机飞手可以从事无人机的起飞、飞行和降落等具体操作,满足不同行业对无人机飞行的需求。 应用领域包括但不限于农业植保、电力巡线、石油管道巡线、航拍、国土资源勘查、应急救援、交通监控

无人机种类详解!!!

一、按飞行平台构型分类 固定翼无人机:这类无人机类似于传统飞机,拥有一对固定的机翼,通过前进的速度和机翼产生的升力实现飞行。 旋翼无人机:包括多旋翼(如四轴、六轴、八轴等)和单旋翼无人机。 无人飞艇:利用氦气等轻气体实现浮力,适用于长时间、低速的巡航任务,常用于气象监测和通信中继。 伞翼无人机:类似于滑翔伞,依靠空气动力实现飞行,具有成本低、操作简便的特点,多用于娱乐和低成本的环境监测。

军事目标无人机视角检测数据集 3500张 坦克 带标注voc

数据集概述 该数据集包含3500张无人机拍摄的图像,主要用于坦克目标的检测。数据集已经按照VOC(Visual Object Classes)标准进行了标注,适用于训练深度学习模型,特别是物体检测模型。 数据集特点 目标明确:专注于坦克这一特定军事目标的检测。多样视角:图像采集自无人机的不同飞行高度和角度,涵盖了各种环境下的坦克图像。高质量标注:每个坦克实例都被精确标注,包括位置信息和类别

C/C++两点坐标求距离以及C++保留两位小数输出,秒了

目录 1. 前言 2. 正文 2.1 问题 2.2 解决办法 2.2.1 思路 2.2.2 代码实现 3. 备注 1. 前言 依旧是带来一个练手的题目,目的就一个,方法千千万,通向终点的方式有很多种,没有谁与谁,我们都是为了成为更好的自己。 2. 正文 2.1 问题 题目描述: 输入两点坐标(X1,Y1),(X2,Y2),计算并输出两点间的距离。 输入格式:

LiveQing视频点播流媒体RTMP推流服务功能-支持大疆等无人机RTMP推流支持OBS推流一步一步搭建RTMP视频流媒体服务示例

LiveQing支持大疆等无人机RTMP推流支持OBS推流一步一步搭建RTMP视频流媒体服务示例 1、流媒体服务搭建2、推流工具准备3、创建鉴权直播间4、获取推流地址5、配置OBS推流6、推流及播放7、获取播放地址7.1 页面查看视频源地址7.2 接口查询 8、相关问题8.1、大疆无人机推流花屏 9、RTMP推流视频直播和点播流媒体服务 1、流媒体服务搭建 Windows/Lin

像素间的关系(邻接、连通、区域、边界、距离定义)

文章目录 像素的相邻像素4邻域D邻域8邻域 邻接、连通、区域和边界邻接类型连通区域边界 距离测度欧氏距离城市街区距离(city-block distance)棋盘距离(chessboard distance) 参考 像素的相邻像素 4邻域 坐标 ( x , y ) (x,y) (x,y)处的像素 p p p有2个水平的相邻像素和2个垂直的相邻像素,它们的坐标是: ( x