算法:分治(快排)题目练习

2024-06-15 23:04

本文主要是介绍算法:分治(快排)题目练习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

题目一:颜色分类

题目二:排序数组

题目三:数组中的第k个最大元素

题目四:库存管理III


题目一:颜色分类

给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。

我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。

必须在不使用库内置的 sort 函数的情况下解决这个问题。

示例 1:

输入:nums = [2,0,2,1,1,0]
输出:[0,0,1,1,2,2]

示例 2:

输入:nums = [2,0,1]
输出:[0,1,2]

提示:

  • n == nums.length
  • 1 <= n <= 300
  • nums[i] 为 01 或 2

解法:三指针

这道题和前面算法的第一题:移动零那一题思想类似,移动零是将数组分为两部分,缺点是如果遇到重复元素效率就很低了,而这里是将一个数组分为三部分,是三个指针最终将整个数组划分为满足题意的3部分,完美解决了出现重复元素的情况(i 直接++即可):

首先定义三个指针,分别是:left、right、i
用 i 来扫描整个区域,left 下标所指向的元素是0这个区域的最右侧,right 是2这个区域的最左侧

当 i 遍历结束时,left和right指针停的位置,就可以将数组分为三部分,但是在遍历过程中,三个指针可以将整个数组分为以下4部分,由left和right代表的含义就可以很清楚的划分:

[0, left]:全为0
[left+1, i-1]:全为1
[i, right-1]:待扫描
[right, n-1]:全为2

所以根据上述的4个区域,将下面讨论 i 遍历数组时可能出现的情况:

nums[i] == 0:swap[++left, i++]
nums[i] == 1:i++;
nums[i] == 2:swap[--right, i]

nums[i] == 0时,先++left,再交换 i 与 left 指向的元素,再i++,优化为swap[++left, i++]
nums[i] == 1时,不用做其他操作,直接i++
nums[i] == 2时,right先--,再与 i 交换,此时 i 指向的元素是right从右边交换过来的,是未扫描的元素,所以 i 不需要++,继续循环判断即可

并且整个循环结束的条件是 i < right,而不是 i < n,因为 right 表示的是2这个区域的最左侧,所以当 i 遇到 right 时,就表示已经遍历完这个数组了 

left,right,i初始位置如下图所示:

代码如下:

class Solution {
public:void sortColors(vector<int>& nums) {int n = nums.size();//left初始值为-1,right初始值为nint left = -1, right = n, i = 0;while(i < right){if(nums[i] == 0) swap(nums[++left], nums[i++]);else if(nums[i] == 1) i++;else swap(nums[--right], nums[i]);}}
};

题目二:排序数组

给你一个整数数组 nums,请你将该数组升序排列。

示例 1:

输入:nums = [5,2,3,1]
输出:[1,2,3,5]

示例 2:

输入:nums = [5,1,1,2,0,0]
输出:[0,0,1,1,2,5]

解法:快排(数组分三块的思想)

之前学习的快排是找一个基准值key,将数组分为2部分,再在其中一部分再找一个基准值key1,继续分为2部分,以此类推,如下所示:

这种方式如果在数组全是重复元素的情况下,就会退化成O(N^2),因为每次都取的最右侧的元素

这道题采用数组分三块的思想,实现快排:

这种方式能够解决出现重复数据时效率很低的问题,因为如果都是重复数据,key的取值就是该元素,排序完一次后,数组中都是=key的区域,而这种方式中我们需要排的是 <key 和 >key 的区域,但是这种情况下没有这两个区域,所以排序结束,仅仅排序了一次,所以如果都是重复数据的时间复杂度是O(N)

分为三部分,左边全是小于key,右边全是大于key,剩余的中间区域就不需要管了,因为左边和右边都划分好了,中间也就划分好了

同样定义三个指针,left、right、i

i来扫描这个数组,left表示小于key的最左侧,right表示大于key的最右侧

所以在扫描数组时分为三步:

nums[i] < key:swap[++left, i++]
nums[i] == key:i++
nums[i] > key:swap[--right, i]

这三步与上一题一模一样,就不细说了

此题还有一个步骤,就是选择key值,之前学过取最左侧的数、取最右侧的数、三数取中等方式,这里采用优化的方式:用随机的方式选择基准的元素

先使用srand种一个随机数种子,再随机得到一个随机数r,使用r%(right - left + 1) + left,得到一个随机数,r就是我们所找的基准值key

代码如下:

class Solution 
{
public:vector<int> sortArray(vector<int>& nums) {srand(time(nullptr));//生成随机数种子qsort(nums, 0, nums.size()-1);return nums;}//数组分三块思想的快排void qsort(vector<int>& nums, int l, int r){if(l >= r) return;int n = nums.size();int left = l - 1, right = r + 1, i = l;//数组分三块int key = getRandom(nums, l ,r);while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]); }//此时分为了[l, left] [left+1, right-1] [right, r]三部分//只需要继续划分[l, left]和[right, r]这两部分即可,因为中间部分就是==key的qsort(nums, l, left);qsort(nums, right, r);}//用随机的方式选择基准的元素int getRandom(vector<int>& nums, int left, int right){int r = rand(); //得到一个随机数rreturn nums[r % (right - left + 1) + left];}
};

题目三:数组中的第k个最大元素

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例 1:

输入: [3,2,1,5,6,4], k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4

求数组中的第 k 哥最大元素,也就是俗称的topK问题

topK问题有四类,分别是:第k大、第k小、前k大、前k小,要解决topK问题,一般有两种方法,堆排序(O(N*logN))或是基于快排的快速选择算法(O(N))

如果规定了必须使用时间复杂度为O(N)的算法,那就只能使用快排,否则也可以使用堆排序解决

下面具体说说快排是怎么解决这个题目的:

优化的快排将数组分为3部分,基准元素是key,三部分分别是 < key,== key,> key,由于求的是第k大的元素,那么每次判断只需要判定这个元素会落到哪一部分,就能够排除其他两部分,从而效率非常高

假设 < key,== key,> key 这三部分分别有a、b、c个元素,所以下面根据元素个数分情况讨论,从右侧区域开始判断,因为右侧区域是大元素的集合

①:c >= k,说明第k大就在这个 > key 的区域里,此时取[right, r]区域中找第 k 大的元素即可
②:b + c >= k,说明第k大的元素在== key的区域中,此时就不需要比较了,直接返回key即可,因为这个区域的数大小都是key
③:走到这里,说明①②都不成立,所以需要去[l, left]区域找
第 k - b -c 大的元素

此题的解决方式就是在上一题的快排的基础上实现的

代码如下:

class Solution {
public:int findKthLargest(vector<int>& nums, int k) {srand(time(nullptr));return qsort(nums, 0, nums.size()-1, k);}int qsort(vector<int>& nums, int l, int r, int k){if(l == r) return nums[l];// 随机选择基准元素int key = getRandom(nums, l, r);// 根据基准元素将数组分为3块int left = l - 1, right = r + 1, i = l;while(i < right) //快排{if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}int c = r - right + 1, b = right - left - 1;if(c >= k) return qsort(nums, right, r, k);else if((b + c) >= k) return key;else return qsort(nums, l, left, k - b - c);//注意不是k,而是k-b-c}int getRandom(vector<int>& nums, int left, int right){int r = rand();return nums[r % (right - left + 1) + left];}
};

题目四:库存管理III

仓库管理员以数组 stock 形式记录商品库存表,其中 stock[i] 表示对应商品库存余量。请返回库存余量最少的 cnt 个商品余量,返回 顺序不限

示例 1:

输入:stock = [2,5,7,4], cnt = 1
输出:[2]

示例 2:

输入:stock = [0,2,3,6], cnt = 2
输出:[0,2] 或 [2,0]

这道题,观察给出的题目信息,其实也是一个topK问题,只不过这里的topK问题是求前k个最小的数

此题有很多解法,例如:

解法一:排序,最后取出前k个最小的数,时间复杂度O(NlogN)

解法二:堆排序,时间复杂度O(Nlogk)

解法三:快速选择算法,时间复杂度O(N)

这里只实现快速选择算法,前两种都比较简单

依然是随机选择基准元素 + 把数组分三块的思想,依旧是分为三部分,分别是 < key,== key,> key,这三部分分别有a、b、c个元素,并且left指向的是最左侧区域的最后一个值,right表示最右侧区域的第一个值,如下所示:

因为此题求的是前k小的元素,所以先考虑 < key 的这个区域,步骤如下:

①:a > k,说明就在< key 的这个区域,在[l, left]区域中查找
②:a + b >= k,直接返回
③:走到这说明①②都不满足,所以在 >key 这个区域即[right, r]中,找k - a - b 个最小元素即可

代码如下:

class Solution 
{
public:vector<int> inventoryManagement(vector<int>& stock, int cnt) {srand(time(nullptr));qsort(stock, 0, stock.size()-1, cnt);//最后将前k个元素返回即可return {stock.begin(), stock.begin() + cnt};}void qsort(vector<int>& nums, int l, int r, int k){if(l >= r) return;//随机选择一个基准元素int key = getRandom(nums, l, r);//数组分三块int left = l - 1, right = r + 1, i = l;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}//分情况讨论int a = left - l + 1, b = right - left - 1;if(a > k) qsort(nums, l, left, k);else if(a + b >= k) return;else qsort(nums, right, r, k - a - b);}int getRandom(vector<int>& nums, int left, int right){return nums[rand() % (right - left + 1) + left];}
};

分治中,关于快排的题目到此结束


这篇关于算法:分治(快排)题目练习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064827

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

RabbitMQ练习(AMQP 0-9-1 Overview)

1、What is AMQP 0-9-1 AMQP 0-9-1(高级消息队列协议)是一种网络协议,它允许遵从该协议的客户端(Publisher或者Consumer)应用程序与遵从该协议的消息中间件代理(Broker,如RabbitMQ)进行通信。 AMQP 0-9-1模型的核心概念包括消息发布者(producers/publisher)、消息(messages)、交换机(exchanges)、