【Unity学习笔记】第十八 基于物理引擎的日月地系统简单实现

本文主要是介绍【Unity学习笔记】第十八 基于物理引擎的日月地系统简单实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载请注明出处: https://blog.csdn.net/weixin_44013533/article/details/139701843

作者:CSDN@|Ringleader|

目录

    • 目标
    • 数学理论
    • 资源准备
    • 数据准备
    • 代码实现
    • Unity准备
    • 效果展示
    • 注意事项
    • 后记

目标

目标:利用Unity的物理引擎实现 “日地月三体系统” 。
效果类似下面的示意图:
在这里插入图片描述

数学理论

  1. 万有引力公式
  2. 向心力公式
  3. 天体圆周运动轨道速度公式
    在这里插入图片描述

资源准备

日月地模型及贴图:
https://assetstore.unity.com/packages/3d/environments/planets-of-the-solar-system-3d-90219
在这里插入图片描述

数据准备

名称数值
引力常数 ( G ) G = 6.67430 × 1 0 − 11 m 3 kg − 1 s − 2 G = 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} G=6.67430×1011m3kg1s2
太阳半径 R Sun R_{\text{Sun}} RSun R Sun = 6.96 × 1 0 8 m R_{\text{Sun}} = 6.96 \times 10^8 \, \text{m} RSun=6.96×108m
太阳质量 M Sun M_{\text{Sun}} MSun M Sun = 1.989 × 1 0 30 kg M_{\text{Sun}} = 1.989 \times 10^{30} \, \text{kg} MSun=1.989×1030kg
日地距离 r Sun-Earth r_{\text{Sun-Earth}} rSun-Earth r Sun-Earth = 1.496 × 1 0 11 m r_{\text{Sun-Earth}} = 1.496 \times 10^{11} \, \text{m} rSun-Earth=1.496×1011m
地球半径 R Earth R_{\text{Earth}} REarth R Earth = 6.371 × 1 0 6 m R_{\text{Earth}} = 6.371 \times 10^6 \, \text{m} REarth=6.371×106m
地球质量 M Earth M_{\text{Earth}} MEarth M Earth = 5.972 × 1 0 24 kg M_{\text{Earth}} = 5.972 \times 10^{24} \, \text{kg} MEarth=5.972×1024kg
地月距离 r Earth-Moon r_{\text{Earth-Moon}} rEarth-Moon r Earth-Moon = 3.844 × 1 0 8 m r_{\text{Earth-Moon}} = 3.844 \times 10^8 \, \text{m} rEarth-Moon=3.844×108m
月球半径 R Moon R_{\text{Moon}} RMoon R Moon = 1.7371 × 1 0 6 m R_{\text{Moon}} = 1.7371 \times 10^6 \, \text{m} RMoon=1.7371×106m
月球质量 M Moon M_{\text{Moon}} MMoon M Moon = 7.348 × 1 0 22 kg M_{\text{Moon}} = 7.348 \times 10^{22} \, \text{kg} MMoon=7.348×1022kg

当然不能取这么大,缩放下比例尺后的数据如下,同时用这些数据初始化系统。

public class ConstantParamter : MonoBehaviour{public static float gravitationalConstant = 0.6674f; // 原6.674e-11public static float sunMass = 1.989e6f; //缩小10^24倍,原1.989e30public static float earthMass = 5.972f; //原5.972e24public static float moonMass = 0.07348f; //原7.348e22public static float distanceOfSunAndEarth = 1496f; //缩小10^8倍,原1.496e11public static float distanceOfEarthAndMoon = 3.844f; //原3.844e8public static float sunScale = 6.96f;public static float earthScale = 0.06371f;public static float moonScale = 0.017371f;public static float earthTangentialVelocityScale = 1.4f; //1.45是近似标准圆public static float moonTangentialVelocityScale = 1f; //1.45是近似标准圆public Rigidbody sun;public Rigidbody earth;public Rigidbody moon;private void Start(){// 初始化太阳sun.mass = sunMass;sun.position = Vector3.zero;// 初始化地球earth.mass = earthMass;earth.position = new Vector3(distanceOfSunAndEarth, 0, 0);// var earthScale = ConstantParamter.earthScale;// earth.transform.localScale = new Vector3(earthScale, earthScale, earthScale);//初始化月球 (月球位置在日地之间还是外面不影响)moon.mass = moonMass;moon.position = new Vector3(distanceOfSunAndEarth - distanceOfEarthAndMoon, 0, 0);// var moonScale = ConstantParamter.moonScale;// moon.transform.localScale = new Vector3(moonScale, moonScale, moonScale);}}

scale 和初始位置最好能自己调整,方便后面的collider范围确定。

代码实现

  1. UniversalGravity 万有引力脚本,对进入trigger的物体施加指向自己的万有引力

    public class UniversalGravity : MonoBehaviour{private float gravitationalConstant = ConstantParamter.gravitationalConstant;public Rigidbody center;private int moonLayer;private int earthLayer;private int sunLayer;public bool printMsg = false;private void Start(){moonLayer = LayerMask.NameToLayer("moon");earthLayer = LayerMask.NameToLayer("earth");sunLayer = LayerMask.NameToLayer("sun");}private void OnTriggerStay(Collider other){try{Print(other.name+"进入"+this.name+"引力场触发器");var layer = other.gameObject.layer;if (layer.Equals(moonLayer) || layer.Equals(earthLayer)){var otherAttachedRigidbody = other.attachedRigidbody;var gravityDirection = center.transform.position - other.transform.position ;var gravityForce = gravitationalConstant * center.mass * otherAttachedRigidbody.mass /Mathf.Pow(gravityDirection.magnitude, 2);otherAttachedRigidbody.AddForce(gravityDirection.normalized * gravityForce);var msg = $"{other.name}{center.name}施以{gravityDirection.normalized * gravityForce}的引力。";Print(msg);}}catch (Exception e){Print(other.name+"异常:"+e);throw;}}void Print(string msg){if (printMsg){Debug.Log(msg);} }}
    
  2. EarthTangentialVelocity :计算地球绕日运动的初速度,因为轨道可能是椭圆,所以在标准圆轨道速度基础上乘以个缩放值

    // 计算地球绕日运动的初速度,因为轨道可能是椭圆,所以在标准圆轨道速度基础上乘以个缩放值
    public class EarthTangentialVelocity : MonoBehaviour
    {private float gravitationalConstant = ConstantParamter.gravitationalConstant;private float earthTangentialVelocityScale = ConstantParamter.earthTangentialVelocityScale; public Rigidbody sun;Rigidbody rig;private void Start(){rig = GetComponent<Rigidbody>();rig.velocity = CalculateVelocity(rig, sun, earthTangentialVelocityScale);print(name + "的初始速度为:" + rig.velocity);}private Vector3 CalculateVelocity(Rigidbody rigid, Rigidbody center, float tangentialVelocityScale){Vector3 startPosition = rigid.position;var distance = startPosition - center.position;var tangentialDirection = Vector3.Cross(distance, Vector3.up).normalized;Vector3 tangentialVelocity = tangentialDirection *Mathf.Sqrt(gravitationalConstant * center.mass / distance.magnitude) *tangentialVelocityScale;return tangentialVelocity;}
    }
    
  3. MoonTangentialVelocity :计算月球初始切向速度。

    // 计算月球初始切向速度。
    // 把月亮起源当作地球抛落物,所以月球初始速度=地球绕日标准圆速度+月球绕地标准圆速度
    // 当然由于轨道不一定是标准圆,所以会加一个缩放值
    public class MoonTangentialVelocity : MonoBehaviour
    {private float gravitationalConstant = ConstantParamter.gravitationalConstant;private float earthTangentialVelocityScale = ConstantParamter.earthTangentialVelocityScale; private float moonTangentialVelocityScale = ConstantParamter.moonTangentialVelocityScale;public Rigidbody sun;public Rigidbody earth;Rigidbody rig;private void Start(){rig = GetComponent<Rigidbody>();var tangentialVelocity1 = CalculateVelocity(rig, earth, moonTangentialVelocityScale);var tangentialVelocity2 = CalculateVelocity(earth, sun, earthTangentialVelocityScale);rig.velocity = tangentialVelocity1 + tangentialVelocity2;print(name + "的初始速度为:" + rig.velocity);}private Vector3 CalculateVelocity(Rigidbody rigid, Rigidbody center, float tangentialVelocityScale){Vector3 startPosition = rigid.position;var distance = startPosition - center.position;var tangentialDirection = Vector3.Cross(distance, Vector3.up).normalized;Vector3 tangentialVelocity = tangentialDirection *Mathf.Sqrt(gravitationalConstant * center.mass / distance.magnitude) *tangentialVelocityScale;return tangentialVelocity;}
    }
    

Unity准备

  1. 本系统使用Unity的built-in physics,将上面store下载的日月地三体模型prefab拖入场景中,各自新增三个万有引力碰撞体,设为isTrigger并调整大小,分别拖入UniversalGravity脚本并添加引力中心。
    在这里插入图片描述 在这里插入图片描述
  2. 为earth和moon分别添加EarthTangentialVelocityMoonTangentialVelocity脚本,这两个脚本是为地球和月球提供初始切向速度, 以保证它们能绕太阳做圆周运动。
  3. 使用trail组件即可展示地月运行轨迹
  4. moon和earth添加对应的layer,注意对应的trigger也要添加layer,过滤不需要施加力的对象。

效果展示

(紫色为月球轨迹,绿色为地球轨迹)

unity物理引擎实现简单日地月三体系统

在这里插入图片描述
地月交会瞬间  

在这里插入图片描述
完整地月绕日轨道  

注意事项

  1. 一定要考虑月球对地球的引力,这是月球不会脱离地球的主要原因
    如果不考虑月球对地球的引力,那么在离心力的作用下月球将会逐渐远离太阳,当然也可能像彗星一样绕超长轨道绕日运动。(就像旋转的雨伞,水滴脱离伞面后将会远远地抛离)

    实验效果:请添加图片描述
    当没有月球对地球引力作用时,月球绕日轨道(类似彗星轨道)  

    我一开始就是因为没考虑月球引力作用,总是得不到正确的轨道,还以为是比例尺导致的,不断调整日地引力常数,缩放月地切线速度,一直没成功,直到考虑到月球引力作用,才瞬间豁然开朗。

  2. 月球初速一定是在地球绕日初速的基础上进行增减的。也就是我代码中提到的 “月球是地球抛落物” 基于这个假说进行的(二体同源)。
    当然也可以采用 “捕获说” ,但实验下来会发现,月球的初速对实验结果影响很大,月球轨道很容易变成或大或小的椭圆。
    在这里插入图片描述
    月球和地球速度不能差异过大,此图为月球速度过大,导致轨道为大椭圆  

    在这里插入图片描述
    月球和地球速度不能差异过大,此图为月球速度过小,导致轨道为小椭圆  

  3. 月球不应作为地球的子对象。第一rigidbody会忽略层级关系,也就是说地球不会带动月球移动;第二也不应该用非物理系统的思想模拟地月系统。

    • 一开始就是因为我得不到正常的月绕地轨道,所以尝试了用transform更新月球和fixJoint 来绑定月球,但觉得这种方式很不物理,所以折腾了几个小时参数,才突然考虑到上面第一条问题。
  4. 本文只是实现了简单的日地月系统,没有精确确定地球月球公转周期,自转也没考虑,如果详细实现的话,就可以做成类似下面链接中所展示的太阳系模型了。

    太阳系模型

后记

经过上面的实验,基本实现了简单的日地月三体系统。还是相当好玩的。至于月球对地球引力是不是实验中所展示的那样重要,可能还需要更多理论学习才能明白。

延申阅读

  • 太阳对月球的引力比地球大两倍多,为什么月球没有被太阳吸过去?
  • 太阳对月球的引力是地球2.2倍,为啥月亮没被太阳抢走?

当然未来有时间的话,还会尝试其他天体系统,比如三体运动。
请添加图片描述
三体问题  

物理系统的话不久将会更新,内容还是比较多的,本节因为比较简短独立且比较好玩,所以独立成章了。

这篇关于【Unity学习笔记】第十八 基于物理引擎的日月地系统简单实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064534

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

轻量级在线服装3D定制引擎Myway简介

我写的面向web元宇宙轻量级系列引擎中的另外一个,在线3D定制引擎Myway 3D。 用于在线商品定制,比如个性化服装的定制、日常用品(如杯子)、家装(被套)等物品的在线定制。 特性列表: 可更换衣服款式,按需定制更换模型可实时更改材质颜色可实时添加文本,并可实时修改大小、颜色和角度,支持自定义字体可实时添加艺术图标,并可实时修改大小、颜色和角度,支持翻转、各种对齐可更改衣服图案,按需求定制

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备