HDU 2157 How many ways?? 矩阵快速幂求A经过K个点到B方案数

2024-06-15 11:58

本文主要是介绍HDU 2157 How many ways?? 矩阵快速幂求A经过K个点到B方案数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:求A经过K个点到B方案数

1个0 1 的矩阵 A

a[i][j] = 1 表示i 到 j可达 或者说 i 到 j 有1条路 或者说i到j经过一个点的方案数 路可以重复走

 

而A2 = A* A

a[i][j] 的含义是

从i到j经过2个点的方案数

A的k次方 A[i,j]代表 i到j走k步的方案有a[i][j]

T组询问 x y z 快速幂求出A矩阵的y次 然后输出A[x][y]

#include <cstdio>
#include <cstring>
const int mod = 1000;
const int maxn = 22;
struct Mat
{int a[maxn][maxn];
};
Mat A, B, C, D;
int n, m;
Mat get(Mat x, Mat y)
{Mat z;memset(z.a, 0, sizeof(z.a));for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++)for(int k = 1; k <= n; k++){z.a[i][j] += x.a[i][k]*y.a[k][j];z.a[i][j] %= mod;}return z;
}
void Mat_pow(int n)
{//puts("s");if(n <= 0)return;while(n){if(n&1)B = get(A, B);A = get(A, A);n >>= 1;}
}
int main()
{while(scanf("%d %d", &n, &m) && (n+m)){memset(D.a, 0, sizeof(D.a));memset(C.a, 0, sizeof(C.a));while(m--){int u, v;scanf("%d %d", &u, &v);u++;v++;D.a[u][v] = 1;}for(int i = 1;  i<= n; i++)C.a[i][i] = 1;int T;scanf("%d", &T);while(T--){int u, v, w;scanf("%d %d %d", &u, &v, &w);			u++;v++;B = C;A = D;Mat_pow(w);printf("%d\n", B.a[u][v]);}}return 0;
}


 

这篇关于HDU 2157 How many ways?? 矩阵快速幂求A经过K个点到B方案数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063387

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :