HDU 2157 How many ways?? 矩阵快速幂求A经过K个点到B方案数

2024-06-15 11:58

本文主要是介绍HDU 2157 How many ways?? 矩阵快速幂求A经过K个点到B方案数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:求A经过K个点到B方案数

1个0 1 的矩阵 A

a[i][j] = 1 表示i 到 j可达 或者说 i 到 j 有1条路 或者说i到j经过一个点的方案数 路可以重复走

 

而A2 = A* A

a[i][j] 的含义是

从i到j经过2个点的方案数

A的k次方 A[i,j]代表 i到j走k步的方案有a[i][j]

T组询问 x y z 快速幂求出A矩阵的y次 然后输出A[x][y]

#include <cstdio>
#include <cstring>
const int mod = 1000;
const int maxn = 22;
struct Mat
{int a[maxn][maxn];
};
Mat A, B, C, D;
int n, m;
Mat get(Mat x, Mat y)
{Mat z;memset(z.a, 0, sizeof(z.a));for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++)for(int k = 1; k <= n; k++){z.a[i][j] += x.a[i][k]*y.a[k][j];z.a[i][j] %= mod;}return z;
}
void Mat_pow(int n)
{//puts("s");if(n <= 0)return;while(n){if(n&1)B = get(A, B);A = get(A, A);n >>= 1;}
}
int main()
{while(scanf("%d %d", &n, &m) && (n+m)){memset(D.a, 0, sizeof(D.a));memset(C.a, 0, sizeof(C.a));while(m--){int u, v;scanf("%d %d", &u, &v);u++;v++;D.a[u][v] = 1;}for(int i = 1;  i<= n; i++)C.a[i][i] = 1;int T;scanf("%d", &T);while(T--){int u, v, w;scanf("%d %d %d", &u, &v, &w);			u++;v++;B = C;A = D;Mat_pow(w);printf("%d\n", B.a[u][v]);}}return 0;
}


 

这篇关于HDU 2157 How many ways?? 矩阵快速幂求A经过K个点到B方案数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063387

相关文章

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c