【LeetCode:2786. 访问数组中的位置使分数最大 + 递归 + 记忆化缓存 + dp】

2024-06-15 07:12

本文主要是介绍【LeetCode:2786. 访问数组中的位置使分数最大 + 递归 + 记忆化缓存 + dp】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述

在这里插入图片描述

🍔 目录

    • 🚩 题目链接
    • ⛲ 题目描述
    • 🌟 求解思路&实现代码&运行结果
      • ⚡ 记忆化缓存
        • 🥦 求解思路
        • 🥦 实现代码
        • 🥦 运行结果
    • 💬 共勉

🚩 题目链接

  • 2786. 访问数组中的位置使分数最大

⛲ 题目描述

给你一个下标从 0 开始的整数数组 nums 和一个正整数 x 。

你 一开始 在数组的位置 0 处,你可以按照下述规则访问数组中的其他位置:

如果你当前在位置 i ,那么你可以移动到满足 i < j 的 任意 位置 j 。
对于你访问的位置 i ,你可以获得分数 nums[i] 。
如果你从位置 i 移动到位置 j 且 nums[i] 和 nums[j] 的 奇偶性 不同,那么你将失去分数 x 。
请你返回你能得到的 最大 得分之和。

注意 ,你一开始的分数为 nums[0] 。

示例 1:

输入:nums = [2,3,6,1,9,2], x = 5
输出:13
解释:我们可以按顺序访问数组中的位置:0 -> 2 -> 3 -> 4 。
对应位置的值为 2 ,6 ,1 和 9 。因为 6 和 1 的奇偶性不同,所以下标从 2 -> 3 让你失去 x = 5 分。
总得分为:2 + 6 + 1 + 9 - 5 = 13 。
示例 2:

输入:nums = [2,4,6,8], x = 3
输出:20
解释:数组中的所有元素奇偶性都一样,所以我们可以将每个元素都访问一次,而且不会失去任何分数。
总得分为:2 + 4 + 6 + 8 = 20 。

提示:

2 <= nums.length <= 105
1 <= nums[i], x <= 106

🌟 求解思路&实现代码&运行结果


⚡ 记忆化缓存

🥦 求解思路
  1. 通过分析该题目,我们发现该题目是具有重复子问题的,可以通过递归来求解。
  2. 情况1:假设我们来到当前的i位置要进行选择,如果当前i位置的奇偶性和之前位置的奇偶性相同,此时直接获取当前位置的数值。但是如果奇偶性不同,那么获取当前的位置,同时减去损耗的x,并且更新此时的奇偶性。
  3. 情况2:假设我们来到当前的i位置并且不选择,那我们就继续向后递归即可。
  4. 最后,返回二中情况当中的最大值即可。注意,递归超时,我们改为缓存即可通过,当然,最后也可以通过动态规划递推的方式来求解。
  5. 有了基本的思路,接下来我们就来通过代码来实现一下。
🥦 实现代码
class Solution {long[][] map;public long maxScore(int[] nums, int x) {int n = nums.length;this.map = new long[n + 1][2];for (int i = 0; i < map.length; i++) {Arrays.fill(map[i], -1);}return process(1, nums[0] % 2, nums, x) + nums[0];}private long process(int i, int flag, int[] nums, int x) {if (i >= nums.length)return 0;if (map[i][flag] != -1)return map[i][flag];long p1 = 0;if (nums[i] % 2 == flag) {p1 += process(i + 1, flag, nums, x) + nums[i];} else {p1 += process(i + 1, nums[i] % 2, nums, x) + nums[i] - x;}long p2 = process(i + 1, flag, nums, x);return map[i][flag] = Math.max(p1, p2);}
}
🥦 运行结果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

这篇关于【LeetCode:2786. 访问数组中的位置使分数最大 + 递归 + 记忆化缓存 + dp】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062768

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.

SpringBoot如何访问jsp页面

《SpringBoot如何访问jsp页面》本文介绍了如何在SpringBoot项目中进行Web开发,包括创建项目、配置文件、添加依赖、控制层修改、测试效果以及在IDEA中进行配置的详细步骤... 目录SpringBoot如何访问JSP页python面简介实现步骤1. 首先创建的项目一定要是web项目2. 在

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

使用Spring Cache时设置缓存键的注意事项详解

《使用SpringCache时设置缓存键的注意事项详解》在现代的Web应用中,缓存是提高系统性能和响应速度的重要手段之一,Spring框架提供了强大的缓存支持,通过​​@Cacheable​​、​​... 目录引言1. 缓存键的基本概念2. 默认缓存键生成器3. 自定义缓存键3.1 使用​​@Cacheab

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景: