AI绘画入门教程(非常详细)从零基础入门到精通Midjourney提示词,咒语

本文主要是介绍AI绘画入门教程(非常详细)从零基础入门到精通Midjourney提示词,咒语,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Microorganisms infiltrating through brain-machine interfaces --v 6.0

Microorganisms infiltrating through brain-machine interfaces ,redpupil --v 6.0

Microorganisms infiltrating through brain-machine interfaces,billion girls dream --v 6.0

--niji 6

“动漫风”模型,可以生成高质量的二次元图像以及插画。

--sref URL

风格一致性,URL 是风格参考图片的网址,通过提供图像URL来指定理想的视觉风格。

下面是示例:图1 作为垫图,另外 选择一张作为视觉风格参考(图2),生成了一组图3

图1

图2

--cref URL

角色一致性功能,URL 是角色参考图片的网址。Midjourney会分析参考图片的角色特征,在生成新图片时尽可能保持一致。

下面是示例:图1 作为角色参考图,生成了一组图2,很像了。

图1

图2

局部修图

案例:比如下图生成的图片里有文字,需要去掉,而出现的原因是我垫的那张图也有文字

操作:点击vary(region),进入局部修图,方法删除垫图的链接,涂抹有文字的区域,重新生图

 Stable Diffusion 基础操作

文生图

如图所示 Stable Diffusion WebUl 的操作界面主要分为: 模型区域、功能区域、参数区域出图区域

txt2img 为文生图功能,重点参数介绍:

正向提示词: 描述图片中希望出现的内容

反向提示词: 描述图片中不希望出现的内容

Sampling method: 采样方法,推荐选择 Euler a 或 DPM++ 系列,采样速度快

Sampling steps: 迭代步数,数值越大图像质量越好,生成时间也越长,一般控制在 30-50就能出效果

Restore faces: 可以优化脸部生成

Width/Height: 生成图片的宽高,越大越消耗显存,生成时间也越长,一般方图 512x512竖图 512x768,需要更大尺寸,可以到 Extras 功能里进行等比高清放大

CFG: 提示词相关性,数值越大越相关,数值越小越不相关,一般建议 7-12 区间

Batch count/Batch size: 生成批次和每批数量,如果需要多图,可以调整下每批数量

Seed: 种子数,-1 表示随机,相同的种子数可以保持图像的一致性,如果觉得一张图的结构不错,但对风格不满意,可以将种子数固定,再调整 prompt 生成

图片

图生图

img2img 功能可以生成与原图相似构图色彩的画像,或者指定一部分内容进行变换。可以重点使用 Inpaint 图像修补这个功能:

Resize mode: 缩放模式,Just resize 只调整图片大小,如果输入与输出长宽比例不同,图片会被拉伸。Crop and resize 裁剪与调整大小,如果输入与输出长宽比例不同,会以图片中心向四周,将比例外的部分进行裁剪。Resize and fill 调整大小与填充,如果输入与输出分辨率不同,会以图片中心向四周,将比例内多余的部分进行填充

Mask blur: 蒙版模糊度,值越大与原图边缘的过度越平滑,越小则边缘越锐利

Mask mode: 蒙版模式,Inpaint masked 只重绘涂色部分,Inpaint not masked 重绘除了涂色的部分

Masked Content: 蒙版内容,fill 用其他内容填充,original 在原来的基础上重绘

Inpaint area: 重绘区域,Whole picture 整个图像区域,Only masked 只在蒙版区域

Denoising strength: 重绘幅度,值越大越自由发挥,越小越和原图接近

图片

ControlNet

安装完 ControlNet 后,在 txt2img 和 img2img 参数面板中均可以调用 ControlNet。操作说明:

Enable: 启用 ControlNet

Low VRAM: 低显存模式优化,建议 8G 显存以下开启

Guess mode: 猜测模式,可以不设置提示词,自动生成图片

Preprocessor: 选择预处理器主要有 OpenPose、Canny、HED、Scribble、MIsd.Seg、Normal Map、Depth

Model: ControlNet 模型,模型选择要与预处理器对应

Weight: 权重影响,使用 ControlNet 生成图片的权重占比影响

Guidance strength(T): 引导强度,值为 1时,代表每选代 1 步就会被 ControlNet引导1次

Annotator resolution: 数值越高,预处理图像越精细Canny low/high threshold: 控制最低和最高采样深度Resize mode: 图像大小模式,默认选择缩放至合适

Canvas width/height: 画布宽高

Create blank canvas: 创建空白画布

Preview annotator result: 预览注释器结果,得到一张 ControlNet 模型提取的特征图片

Hide annotator result: 隐藏预览图像窗

图片

LORA 模型训练说明

前面提到 LORA 模型具有训练速度快,模型大小适中 (100MB 左右),配置要求低 (8G 显存),能用少量图片训练出风格效果的优势。

以下简要介绍该模型的训练方法:

  最后想说

AIGC(AI Generated Content)技术,即人工智能生成内容的技术,具有非常广阔的发展前景。随着技术的不断进步,AIGC的应用范围和影响力都将显著扩大。以下是一些关于AIGC技术发展前景的预测和展望:

1、AIGC技术将使得内容创造过程更加自动化,包括文章、报告、音乐、艺术作品等。这将极大地提高内容生产的效率,降低成本。2、在游戏、电影和虚拟现实等领域,AIGC技术将能够创造更加丰富和沉浸式的体验,推动娱乐产业的创新。3、AIGC技术可以帮助设计师和创意工作者快速生成和迭代设计理念,提高创意过程的效率。

未来,AIGC技术将持续提升,同时也将与人工智能技术深度融合,在更多领域得到广泛应用。感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程。

对于从来没有接触过AI绘画的同学,我已经帮你们准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

AIGC学习必备工具和学习步骤

工具都帮大家整理好了,安装就可直接上手

现在AI绘画还是发展初期,大家都在摸索前进。

但新事物就意味着新机会,我们普通人要做的就是抢先进场,先学会技能,这样当真正的机会来了,你才能抓得住。

如果你对AI绘画感兴趣,我可以分享我在学习过程中收集的各种教程和资料。

学完后,可以毫无问题地应对市场上绝大部分的需求。

这份AI绘画资料包整理了Stable Diffusion入门学习思维导图、Stable Diffusion安装包、120000+提示词库,800+骨骼姿势图,Stable Diffusion学习书籍手册、AI绘画视频教程、AIGC实战等等。

【Stable Diffusion安装包(含常用插件、模型)】

img

【AI绘画12000+提示词库】

img

【AI绘画800+骨骼姿势图】

img

【AI绘画视频合集】

img

还有一些已经总结好的学习笔记,可以学到不一样的思路。

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

这篇关于AI绘画入门教程(非常详细)从零基础入门到精通Midjourney提示词,咒语的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062694

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/