切割钢条【动态规划】

2024-06-15 05:58
文章标签 动态 规划 切割 钢条

本文主要是介绍切割钢条【动态规划】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

假设公司出售一段长度为i英寸的钢条的价格为Pi(i = 1, 2, ...单位:美元),下面给出了

价格表样例:

长度i    1     2     3     4     5     6     7    8     9    10

价格Pi  1     5     8     9    10   17   17  20   24    30


切割钢条的问题是这样的:给定一段长度为n英寸的钢条和一个价格表Pi,求切割方案,使

得销售收益Rn最大。当然,如果长度为n英寸的钢条价格Pn足够大,最优解可能就是完全

不需要切割。对于上述价格表样例,我们可以观察所有最优收益值Ri及对应的最优解方案:

R1 = 1,切割方案1 = 1(无切割)
R2 = 5,切割方案2 = 2(无切割)
R3 = 8, 切割方案3 = 3(无切割)
R4 = 10, 切割方案4 = 2 + 2
R5 = 13, 切割方案5 = 2 + 3
R6 = 17, 切割方案6 = 6(无切割)
R7 = 18, 切割方案7 = 1 + 6或7 = 2 + 2 + 3
R8 = 22, 切割方案8 = 2 + 6
R9 = 25, 切割方案9 = 3 + 6
R10 = 30,切割方案10 = 10(无切割)
更一般地,对于Rn(n >= 1),我们可以用更短的钢条的最优切割收益来描述它:
Rn = max(Pn, R1 + Rn-1, R2 + Rn-2,...,Rn-1 + R1) 公式I
首先将钢条切割为长度为i和n - i两段,接着求解这两段的最优切割收益Ri和Rn - i
(每种方案的最优收益为两段的最优收益之和),由于无法预知哪种方案会获得最优收益,

我们必须考察所有可能的i,选取其中收益最大者。如果直接出售原钢条会获得最大收益,我

们当然可以选择不做任何切割。

//带备忘的自顶向下法
#include<stdio.h>
#include<algorithm>
using namespace std;
const int INF = 0xffffff0;
int p[110],r[110];int MEMOIZED_CUT_ROD_AUX(int n)
{if(r[n] >= 0)//检查所求值是否是已知的return r[n];int q;if(n == 0)//这里计算局部最优解q = 0;else{q = -INF;for(int i = 1;i <= n; i++)q = max(q,p[i]+MEMOIZED_CUT_ROD_AUX(n-i));}r[n] = q;//将q存入r[n],返回q值return q;
}
int MEMOIZED_CUT_ROD(int n)
{int i;for(i = 0; i <= n; i++)//全部初始化r[i] = -INF;return MEMOIZED_CUT_ROD_AUX(n);//求解
}int main()
{int N;while(~scanf("%d",&N)){for(int i = 1; i <= N; i++)scanf("%d",&p[i]);int ans = MEMOIZED_CUT_ROD(N);printf("%d\n",ans);}return 0;
}

钢条切割问题还存在一种相似的但更为简单的地柜求解方法:

我们将钢条从左边切割下长度为i的一段,只对右边剩下长度为n-i的一段惊醒切割。(递归

求解),对左边的一段则不再切割。即问题的分解方式为:将长度为n的钢条分解为左边开

始一段,以及剩余部分继续分解的结果。这样,不做任何切割的方案就可以描述为:第一段

的长度为n,收益为Pn,剩余部分长度为0,对应的收益为R0 = 0。于是我们可以得到公式I

的简化版本:

Rn = max(Pi+Rn-i)(1<=i<=n)  公式II

在此公式中,原问题的最优解只包含一个相关子问题(右端剩余部分)的解,而不是两个。

//自底向上法
#include<stdio.h>
#include<algorithm>
using namespace std;
const int INF = 0xffffff0;
int p[110],r[110];//r[n]来保存子问题int BOTTOM_UP_CUT_ROD(int n)
{r[0] = 0;//长度为0的钢条没有收益for(int j = 1; j <= n; j++)//对j=1,2,3,…,n按升序求解每个规模为j的子问题。{int q = -INF;for(int i = 1; i <= j; i++){q = max(q,p[i]+r[j-i]);//直接访问数组r[j-i]来获得规模为j-i的子问题的解}r[j] = q;}return r[n];
}
int main()
{int N;while(~scanf("%d",&N)){for(int i = 1; i <= N; i++)scanf("%d",&p[i]);int ans = BOTTOM_UP_CUT_ROD(N);printf("%d\n",ans);}return 0;
}





这篇关于切割钢条【动态规划】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062607

相关文章

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d