【动态规划】| 详解路径问题之地下城游戏 力扣174 (困难题)

2024-06-14 23:04

本文主要是介绍【动态规划】| 详解路径问题之地下城游戏 力扣174 (困难题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎗️ 主页:小夜时雨
🎗️专栏:动态规划
🎗️如何活着,是我找寻的方向

优雅

目录

  • 1. 题目解析
  • 2. 代码

1. 题目解析

题目链接: https://leetcode.cn/problems/minimum-path-sum/description/
在这里插入图片描述
在这里插入图片描述

建议先看一下前面的几道题加深理解一下, 本道题是一个反方向思考
不同路径1 :https://leetcode.cn/problems/unique-paths/description/
不同路径2: https://blog.csdn.net/Jin__Wang/article/details/139623230
最小路径和:https://blog.csdn.net/Jin__Wang/article/details/139653515

这道题的难度是困难, 要是把前面文章关于路径问题的题之后, 这道题理解起来还是可以的,与常规的题目是正好相反的,具体地一一介绍。

通常动态规划的题目有五个大步骤进行解析, 本道题也不例外我们来一一进行分析。

1. 状态表示

动态规划的重点是状态表示, 我们通过状态表示才可以写出正确的状态转移方程, 状态表示我们通常都是根据 经验+题目 要求来进行定义的.

  • 但是注意本道题目用我们之前的经验来定义状态表示,后续是推导不出来状态转移方程的。

比如本道题又是一个二维的矩阵, 可以以另一种经验来定义状态表示:即从某个位置为起点,达到终点 + 题目要求。
以本题为例, 状态表示可以写为:

dp[i][j]: 从 (i, j) 这个位置出发,到达终点, 所需的最低健康点数

和之前的状态表示是反过来的,之前都是以(i,j) 为终点,本题则是表示为起点。

2. 状态转移方程

  • 根据状态表示, (i,j)是起点,那么就可以往下走到达(i + 1, j)位置,或者往右走到达(i,j + 1)位置。
  • 根据状态表示, dp[i][j] 的大小可以由两部分组成, 问的是最低点数, 那么共有两条不同的路径: 从往右走或者从往下走,求的应该是这二者中的最小值。
  • 从 (i, j) 走到终点所需的最低点数为 dp[i][j] , 那么从 (i + 1, j) 走到 走到终点所需的最低点数为 dp[i + 1][j], 因为要求点数必须是正整数,所以有 dp[i][j]+ nums[i][j] >= dp[i + 1][j], 才能走到终点。同理 dp[i][j + 1] 也是.
  • 那么 dp[i][j] >= dp[i + 1][j] - nums[i][j]. 这是往下走的情况, 往右走的情况同理,求二者中的最小值。

dp[i][j] = Math.min(dp[i + 1][j],dp[i][j + 1]) - nums[i][j]

  • 细节问题:题目要求点数 必须为正整数, 有可能计算出来的 dp[i][j] 为一个负数,
  • 表示最低点数是一个负值, 然后到达(i,j)是一个超大的正数,加上之后走到了终点,不符合实际情况,所以血量至少为1,所以多加一个比较条件。dp[i][j] > 0的时候没变化, <=0 的时候则会设置为1。
  • 所以状态转移方程应该为:

dp[i][j] = Math.min(dp[i + 1][j],dp[i][j + 1]) - nums[i][j]
dp[i][j] = Math.max(1,dp[i][j)

  • 细节问题2: 前面几题都提过的下标映射.这里和不同路径1 不同的是, 这里需要用到原数组,我们通常也是采取多加一行一列的方式来避免出现 dp 表越界的情况, 所以要注意映射关系。
  • 但是因为我们是加的是最后一行和最后一列,遍历也是反过来的,所以下标还是对应上的,所以遍历 dp 表填表的过程中的 (i, j)对应原数组的值是 nums[i][j]。 和之前还是不一样

在这里插入图片描述

3. 初始化

细节问题: 观察状态转移方程可知, 有可能会有越界的风险, 此处我们依旧采取一种多加一行一列的方式来进行初始化.多加一行一列要保证两点:

  1. 虚拟节点的值要保证后面的dp 表里的值是正确的
  2. 要注意下标的映射关系. 因为我们是多加了一行一列, 所以对应到原始数组就应该行列要减一. (此处用到了原数组, 所以要有这个映射关系)

注意 :
这道题的初始化和前几道题依旧是相反的。

注意到我们计算 dp[i][j] 的时候是用到下一行的数据和本行右侧的数据,所以填表顺序也是反的, 初始化也是反的,需要初始化最后一行最后一列。

  • 本题的初始化方式和 最小路径和类似,不过初始位置是最后一行最后一列。

  • 最小路径和:https://blog.csdn.net/Jin__Wang/article/details/139653515

  • 根据实际情况来,救完公主到达 (m, n)位置后,往右走或者往下走,保证救完公主之后的点数最低为1, 所以 dp[m][n - 1] = dp[m - 1][n] = 1

  • 其余的位置因为求的是最小值,所以不要干扰到结果,应该和最小路径和一样其余位置更新为最大值

  • 例如观察下图我们发现,填写 dp[1][1] 的时候需要用到左边和上边值, 因为求的是二者中的最小值, 为了不干扰结果, 设置为0即可。

  • 看下图,但是填写 dp[m - 1][n - 2] 的时候,需要用到下面的值 dp[m][n - 2] 和 dp[m - 1][n - 1] 作比较求最小值,倘如是dp[m][n - 2] 还是默认初始化为 0 的话, 就会影响结果,有可能使 dp[m - 1][n - 2] = dp[m][n - 2] - nums[m - 1][n - 1, 此时dp[m][n - 2] 为0,就导致错误了.

  • 实际情况应该是 dp[m - 1][n - 2] 本该是只有一条路径, 那就是从到 (m - 1,n - 2)走到(m - 1,n - 1),就应该是 dp[m - 1][n - 2] = dp[m - 1][n - 1] - nums[m - 1][n - 1]. 观察结果,因为求一个最小值,让 dp[m][n - 2] 是一个非常大的数字,不影响结果即可。此处通常我们设置为整数最大值或者 0x3f3f3f3f.

看图更容易理解
在这里插入图片描述

4. 填表顺序

观察可知, 填 (i, j) 的值的时候需要用到下一行和右边的值. 所以填表顺序是 从下往上, 从右往左.

5. 返回值

根据题目的要求, 从起点(0,0)要到达(m, n) 的最小健康点数, 正好对应 dp[0][0] 的表示. 所以返回 dp[0][0] 即可,和之前的题目返回值也是不同的。

2. 代码

这道题难在思路都是反过来的,5个分析的过程和之前都是不一样的。

动态规划的代码编写一般都是分为 4 个步骤进行:

  1. 创建 dp 表
  2. 初始化
  3. 填表
  4. 返回值
   // 完全跟前面的题完全反过来了: 包括状态表示, 方程, 和填表顺序public int calculateMinimumHP(int[][] dungeon) {// ×××××××dp[i]状态表示: 从起点左上角到达(i,j) 位置的最小健康点数 这种找不出状态方程××××// dp[i]状态表示: 从(i,j) 位置到达终点所需的最小健康点数// 1.创建 dp表// 2.初始化// 3.填表// 4.返回值// 动态规划 这里的是二维, 所以时空都是O(M*N)int m = dungeon.length, n = dungeon[0].length;int[][] dp = new int[m + 1][n + 1];// 初始化, 新加的最右边一列和最下边一列// 都需要进行初始化为最大值 (因为求的是最小值, 默认的0有可能干扰结果)for(int i = 0; i <= m; i++) dp[i][n] = Integer.MAX_VALUE; //新增行for(int j = 0; j <= n; j++) dp[m][j] = Integer.MAX_VALUE; //新增列// dp[0][1] = dp[1][0] = 0; // 特殊处理边界dp[m][n - 1] = dp[m - 1][n] = 1;// 做好映射关系, 这里因为添加的是右下角的行和列, 所以不需要映射// 这里填的是 dp 表, 所以建议从(1,1) 开始. 也就是dp表多加了一行一列// 遍历的是 dp 表for(int i = m - 1; i >= 0; i--) { // 从xia往上每一行 和之前反过来了for(int j = n - 1; j >= 0; j--) { // 从you往左每一列// dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + dungeon[i - 1][j - 1]; 这是之前的写法, 这道题是反过来的dp[i][j] = Math.min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j];dp[i][j] = Math.max(1, dp[i][j]); //细节问题:防止血量有负数}}// return dp[m][n];return dp[0][0];}

🎗️🎗️🎗️ 好啦,到这里有关本题的分享就没了,如果感觉做的还不错的话可以点个赞,关注一下,你的支持就是我继续下去的动力,我们下期再见,拜了个拜~ ☆*: .。. o(≧▽≦)o .。.:*☆

这篇关于【动态规划】| 详解路径问题之地下城游戏 力扣174 (困难题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061744

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl