【JAVA实现】基于皮尔逊相关系数的相似度

2024-06-14 22:08

本文主要是介绍【JAVA实现】基于皮尔逊相关系数的相似度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下解释摘自于网上, 简单易懂特地摘抄过来 原链接

皮尔逊相关系数理解有两个角度
1. 按照高中数学水平来理解, 它很简单, 可以看做将两组数据首先做Z分数处理之后, 然后两组数据的乘积和除以样本数Z分数一般代表正态分布中, 数据偏离中心点的距离.等于变量减掉平均数再除以标准差.(就是高考的标准分类似的处理)标准差则等于变量减掉平均数的平方和,再除以样本数,最后再开方.
所以, 根据这个最朴素的理解,我们可以将公式依次精简为:
公式
2.按照大学的线性数学水平来理解, 它比较复杂一点,可以看做是两组数据的向量夹角的余弦.

皮尔逊相关的约束条件
1. 两个变量间有线性关系
2. 变量是连续变量
3. 变量均符合正态分布,且二元分布也符合正态分布
4. 两变量独立


皮尔逊相关系数的值域等级

0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关


以上内容看起来太过晦涩,不如看个手算的示例让人更容易懂
使用维基中的例子

例如,假设五个国家的国民生产总值分别是1、2、3、5、8(单位10亿美元),又假设这五个国家的贫困比例分别是11%、12%、13%、15%、18%。

那么需要被计算的两个数据样本分别是

x->(1,2,3,5,8)
y->(0.11,0.12,0.13,0.15,0.18)

接下来计算两个数据样本的平均值

x的平均值为3.8
y的平均值为0.138

接下来计算皮尔逊系数的分子

用大白话来写就是:
(1-3.8)*(0.11-0.138)=0.0784
(2-3.8)*(0.12-0.138)=0.0324
(3-3.8)*(0.13-0.138)=0.0064
(5-3.8)*(0.15-0.138)=0.0144
(8-3.8)*(0.18-0.138)=0.1764
0.0784+0.0324+0.0064+0.0144+0.1764=0.308

同理分号下面的分别是
sum((x-mean(x))^2)=30.8 sum((y-mean(y))^2)= 0.00308

sum((x-mean(x))^2)=30.8
(1-3.8)^2=7.84 #平方
(2-3.8)^2=3.24 #平方
(3-3.8)^2=0.64 #平方
(5-3.8)^2=1.44 #平方
(8-3.8)^2=17.64 #平方
7.84+3.24+0.64+1.44+17.64=30.8

同理,求得:

sum((y-mean(y))^2)= 0.00308

然后再开平方根,分别是:

30.8^0.5=5.549775 0.00308^0.5=0.055

这篇关于【JAVA实现】基于皮尔逊相关系数的相似度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061636

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——