3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition

2024-06-14 21:32

本文主要是介绍3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition


3DCNN框架图

参数分析
Input:7 @ 60 × \times × 40, 7帧,图片大小60 × \times × 40

hardwired: H1
产生5通道信息,分别是gray, gradient-x, gradient-y, optflow-x, optflow-y。前三个对于每一张图片都计算得到一张图,后两个是相邻两张图片得到一张图。
因此,经过hardwired可以得到:7 × \times × 3 + 6 × \times × 2 = 33
经过hardwired可以得到33 @ 60 × \times × 40

3DCNN layer:C2
对于前面的5个通道,每个通道都用2个kernel size: 7 × \times × 7 × \times × 3 (7 × \times × 7是spatial dimension, 3是temporal dimension)的3D卷积(padding=0, stride=1)
((7-3+1) × \times × 3 + (6-3+1) × \times × 2) × \times × 2 = 23 × \times × 2 (5个通道分别有[5,5,5,4,4]个)
输出大小是:(60-7+1)/1 = 54; (40-7+1)/1 = 34
因此,经过C2可以得到 23 × \times × 2 @ 54 × \times × 34
C2的参数量:5 × \times × 2 × \times × (7 × \times × 7 × \times × 3+1)= 1480

Subsampling layer: S3
用2 × \times × 2的subsampling
输出:23 × \times × 2@27 × \times × 17
参数量:23 × \times × 2 × \times × 2=92

3DCNN layer:C4
对于前面的5个通道(5个通道分别有[5,5,5,4,4]个feature maps),每个通道都用2个kernel size: 7 × \times × 6 × \times × 3 (7 × \times × 6是spatial dimension, 3是temporal dimension)的3D卷积(padding=0, stride=1),每个位置用了3个conv
((5-3+1) × \times × 3 + (4-3+1) × \times × 2 ) × \times × 2 × \times × 3 = 13 × \times × 6 (5个通道分别有[3,3,3,2,2]个)
输出大小是:(27-7+1)/1=21;(17-6+1)/1=12
因此,经过C4可以得到 13 × \times × 6 @ 21 × \times × 12
C2的参数量:5 × \times × 6 × \times × (7 × \times × 6 × \times × 3+1)=3810

Subsampling layer: S5
用3 × \times × 3的subsampling
输出:13 × \times × 6 @7 × \times × 4
参数量:13 × \times × 6 × \times × 2=156

CNN layer:C6
kernel size: 7 × \times × 4,num output = 128 (每个都和前面S5的78个feature map连接)
因此,经过C6可以得到 128 @ 1 × \times × 1
C6的参数量:128 × \times × 78 × \times × (7 × \times × 4+1)= 289536

最后一层:
输出3 classes, 全连接
参数量:3 × \times × 128 = 384

综上,整个网络的参数量是1480 + 92 + 3810 + 156 + 289536 + 384 = 295458

喜欢请打赏,一毛两毛也是个意思,么么哒
支F宝账号:2363891614@qq.com
在这里插入图片描述

这篇关于3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061559

相关文章

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex