3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition

2024-06-14 21:32

本文主要是介绍3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition


3DCNN框架图

参数分析
Input:7 @ 60 × \times × 40, 7帧,图片大小60 × \times × 40

hardwired: H1
产生5通道信息,分别是gray, gradient-x, gradient-y, optflow-x, optflow-y。前三个对于每一张图片都计算得到一张图,后两个是相邻两张图片得到一张图。
因此,经过hardwired可以得到:7 × \times × 3 + 6 × \times × 2 = 33
经过hardwired可以得到33 @ 60 × \times × 40

3DCNN layer:C2
对于前面的5个通道,每个通道都用2个kernel size: 7 × \times × 7 × \times × 3 (7 × \times × 7是spatial dimension, 3是temporal dimension)的3D卷积(padding=0, stride=1)
((7-3+1) × \times × 3 + (6-3+1) × \times × 2) × \times × 2 = 23 × \times × 2 (5个通道分别有[5,5,5,4,4]个)
输出大小是:(60-7+1)/1 = 54; (40-7+1)/1 = 34
因此,经过C2可以得到 23 × \times × 2 @ 54 × \times × 34
C2的参数量:5 × \times × 2 × \times × (7 × \times × 7 × \times × 3+1)= 1480

Subsampling layer: S3
用2 × \times × 2的subsampling
输出:23 × \times × 2@27 × \times × 17
参数量:23 × \times × 2 × \times × 2=92

3DCNN layer:C4
对于前面的5个通道(5个通道分别有[5,5,5,4,4]个feature maps),每个通道都用2个kernel size: 7 × \times × 6 × \times × 3 (7 × \times × 6是spatial dimension, 3是temporal dimension)的3D卷积(padding=0, stride=1),每个位置用了3个conv
((5-3+1) × \times × 3 + (4-3+1) × \times × 2 ) × \times × 2 × \times × 3 = 13 × \times × 6 (5个通道分别有[3,3,3,2,2]个)
输出大小是:(27-7+1)/1=21;(17-6+1)/1=12
因此,经过C4可以得到 13 × \times × 6 @ 21 × \times × 12
C2的参数量:5 × \times × 6 × \times × (7 × \times × 6 × \times × 3+1)=3810

Subsampling layer: S5
用3 × \times × 3的subsampling
输出:13 × \times × 6 @7 × \times × 4
参数量:13 × \times × 6 × \times × 2=156

CNN layer:C6
kernel size: 7 × \times × 4,num output = 128 (每个都和前面S5的78个feature map连接)
因此,经过C6可以得到 128 @ 1 × \times × 1
C6的参数量:128 × \times × 78 × \times × (7 × \times × 4+1)= 289536

最后一层:
输出3 classes, 全连接
参数量:3 × \times × 128 = 384

综上,整个网络的参数量是1480 + 92 + 3810 + 156 + 289536 + 384 = 295458

喜欢请打赏,一毛两毛也是个意思,么么哒
支F宝账号:2363891614@qq.com
在这里插入图片描述

这篇关于3DCNN参数解析:2013-PAMI-3DCNN for Human Action Recognition的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061559

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧