Hadoop的namenode的管理机制,工作机制和datanode的工作原理

2024-06-14 14:18

本文主要是介绍Hadoop的namenode的管理机制,工作机制和datanode的工作原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hadoop的namenode的管理机制,工作机制和datanode的工作原理

HDFS前言:

  1) 设计思想

    分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析

  2)在大数据系统中作用:

    为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务

  3)重点概念:文件切块,副本存放,元数据

  4)、NameNode节点:由core-site.xml配置指定(name=fs.defaultFS,value=hdfs://slaver1:8020)。

      DataNode/NodeManager节点:由slavers文件指定。

      SecondaryNameNode节点:由hdfs-site.xml文件指定(name=dfs.namenode.secondary.http-address,value=slaver1:50090)

     ResourceManager节点:在yarn-site.xml文件中指定(name=yarn.resourcemanager.hostname,value=slaver1)。

     historyServer节点:在mapred-site.xml配置文件里面修改。

1:分布式文件系统(Distributed File System):

(1):数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统 。
(2):是一种允许文件通过网络在多台主机上分享的文件系统,可让多机器上的多用户分享文件和存储空间。
(3):通透性。让实际上是通过网络来访问文件的动作,由程序与用户看来,就像是访问本地的磁盘一般。
(4):容错。即使系统中有某些节点脱机,整体来说系统仍然可以持续运作而不会有数据损失。
(5):分布式文件管理系统很多,hdfs只是其中一种。适用于一次写入多次查询的情况,不支持并发写情况,小文件不合适。

2:Hadoop最擅长的是(离线 )日志分析   

(1):HDFS----》海量数据的存储,负责文件读写。

(2):MapReduce----》海量数据的分析。

(3):YARN----》资源管理调度,负责为mapreduce程序分配硬件资源。

3:HDFS的Shell

(1):调用文件系统(FS)Shell命令应使用 bin/hadoop fs 的形式。
(2):所有的FS shell命令使用URI路径作为参数。
   URI格式是scheme://authority/path。HDFS的scheme是hdfs,对本地文件系统,scheme是file。其中scheme和authority参数都是可选的,如果未加指定,就会使用配置中指定的默认scheme。
   例如:/parent/child可以表示成hdfs://namenode:namenodePort/parent/child,或者更简单的/parent/child(假设配置文件是namenode:namenodePort)
(3):大多数FS Shell命令的行为和对应的Unix Shell命令类似。

4:HDFS fs命令

(1)-help [cmd]    //显示命令的帮助信息
(2)-ls(r) <path>    //显示当前目录下所有文件
(3)-du(s) <path>    //显示目录中所有文件大小
(4)-count[-q] <path>    //显示目录中文件数量
(5)-mv <src> <dst>    //移动多个文件到目标目录
(6)-cp <src> <dst>    //复制多个文件到目标目录
(7)-rm(r)        //删除文件(夹)
(8)-put <localsrc> <dst>    //本地文件复制到hdfs
(9)-copyFromLocal    //同put
(10)-moveFromLocal    //从本地文件移动到hdfs
(11)-get [-ignoreCrc] <src> <localdst>    //复制文件到本地,可以忽略crc校验
(12)-getmerge <src> <localdst>        //将源目录中的所有文件排序合并到一个文件中
(13)-cat <src>    //在终端显示文件内容
(14)-text <src>    //在终端显示文件内容
(15)-copyToLocal [-ignoreCrc] <src> <localdst>    //复制到本地
(16)-moveToLocal <src> <localdst>
(17)-mkdir <path>    //创建文件夹
(18)-touchz <path>    //创建一个空文件

5:HDFS的Shell命令练习

(1)#hadoop fs -ls /  查看HDFS根目录
(2)#hadoop fs -mkdir /test 在根目录创建一个目录test
(3)#hadoop fs -mkdir /test1 在根目录创建一个目录test1
(4)#hadoop fs -put ./test.txt /test 或#hadoop fs -copyFromLocal ./test.txt /test
(5)#hadoop fs -get /test/test.txt . 或#hadoop fs -getToLocal /test/test.txt .
(6)#hadoop fs -cp /test/test.txt /test1
(7)#hadoop fs -rm /test1/test.txt
(8)#hadoop fs -mv /test/test.txt /test1
(9)#hadoop fs -rmr /test1  

6:HDFS架构

(1)NameNode
(2)DataNode
(3)Secondary NameNode

7:NameNode

(1)是整个文件系统的管理节点。它维护着整个文件系统的文件目录树,文件/目录的元信息和每个文件对应的数据块列表。接收用户的操作请求。
(2)文件包括:
fsimage:元数据镜像文件。存储某一时段NameNode内存元数据信息。
edits:操作日志文件。
fstime:保存最近一次checkpoint的时间
(3)以上这些文件是保存在linux的文件系统中。

(4)、NameNode是主节点,存储文件的元数据,如文件名,文件目录结构,文件属性(生成事件,副本数,文件权限),以及每个文件的块列表和块所在的DataNode信息等等。

 (5)、Namenode是一个中心服务器,单一节点,负责管理文件系统的名字空间,以及客户端对文件的访问。文件操作,NameNode负责文件元数据的操作,DataNode负责处理文件内容的读写请求,跟文件内容相关的数据流不经过NameNode,只会询问它跟那个DataNode联系,否则NameNode会成为系统的瓶颈。副本存放在那些DataNode上由NameNode来控制,根据全局情况做出块放置决定,读取文件时候NameNode尽量让用户先读取最近的副本,降低带块消耗和读取延时。NameNode全权管理数据块的复制。它周期性的从集群中每个DataNode接受心跳信号和块状态报告(Blocreport)。接受到心跳信号意味着该DataNode节点正常工作。块状态报告包含一个该DataNode上所有数据块的列表。

8:NameNode的工作特点

(1)Namenode始终在内存中保存metedata,用于处理“读请求”
(2)到有“写请求”到来时,namenode会首先写editlog到磁盘,即向edits文件中写日志,成功返回后,才会修改内存,并且向客户端返回
(3)Hadoop会维护一个fsimage文件,也就是namenode中metedata的镜像,但是fsimage不会随时与namenode内存中的metedata保持一致,而是每隔一段时间通过合并edits文件来更新内容。Secondary namenode就是用来合并fsimage和edits文件来更新NameNode的metedata的。

9:SecondaryNameNode

(1)HA的一个解决方案。但不支持热备。配置即可。
(2)执行过程:从NameNode上下载元数据信息(fsimage,edits),然后把二者合并,生成新的fsimage,在本地保存,并将其推送到NameNode,替换旧的fsimage.
(3)默认在安装在NameNode节点上,但这样...不安全!

(4)、用来监控hdfs状态的辅助后台程序,每隔一段事件获取hdfs元数据的快照。

10:secondary namenode的工作流程

(1)secondary通知namenode切换edits文件
(2)secondary从namenode获得fsimage和edits(通过http)
(3)secondary将fsimage载入内存,然后开始合并edits
(4)secondary将新的fsimage发回给namenode
(5)namenode用新的fsimage替换旧的fsimage

11:什么时候checkpiont

(1)fs.checkpoint.period 指定两次checkpoint的最大时间间隔,默认3600秒。

(2)fs.checkpoint.size    规定edits文件的最大值,一旦超过这个值则强制checkpoint,不管是否到达最大时间间隔。默认大小是64M。

12:NameNode和SecondNameNode之间的联系

 13:Datanode

(1)提供真实文件数据的存储服务。
(2)文件块(block):最基本的存储单位。对于文件内容而言,一个文件的长度大小是size,那么从文件的0偏移开始,按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block。HDFS默认Block大小是128MB,以一个256MB文件,共有256/128=2个Block.
dfs.block.size
(3)不同于普通文件系统的是,HDFS中,如果一个文件小于一个数据块的大小,并不占用整个数据块存储空间
(4)Replication。多复本。默认是三个。hdfs-site.xml的dfs.replication属性。

(5)、DataNode在本地文件系统存储文件块数据,以及块数据的校验和。

(6)、DataNode,一个数据块在DataNode以文件存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。DataNode启动后NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或者删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。集群运行中可以安全加入和退出一些机器。

14:Remote Procedure Call

(1)RPC——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发包括网络分布式多程序在内的应用程序更加容易。

(2)RPC采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。在服务器端,进程保持睡眠状态直到调用信息的到达为止。当一个调用信息到达,服务器获得进程参数,计算结果,发送答复信息,然后等待下一个调用信息,最后,客户端调用进程接收答复信息,获得进程结果,然后调用执行继续进行。

(3)hadoop的整个体系结构就是构建在RPC之上的(见org.apache.hadoop.ipc)。

15:HDFS读过程

(1)初始化FileSystem,然后客户端(client)用FileSystem的open()函数打开文件
(2)FileSystem用RPC调用元数据节点,得到文件的数据块信息,对于每一个数据块,元数据节点返回保存数据块的数据节点的地址。
(3)FileSystem返回FSDataInputStream给客户端,用来读取数据,客户端调用stream的read()函数开始读取数据。
(4)DFSInputStream连接保存此文件第一个数据块的最近的数据节点,data从数据节点读到客户端(client)
(5)当此数据块读取完毕时,DFSInputStream关闭和此数据节点的连接,然后连接此文件下一个数据块的最近的数据节点。
(6)当客户端读取完毕数据的时候,调用FSDataInputStream的close函数。
(7)在读取数据的过程中,如果客户端在与数据节点通信出现错误,则尝试连接包含此数据块的下一个数据节点。
(8)失败的数据节点将被记录,以后不再连接。

16:HDFS写过程

(1)初始化FileSystem,客户端调用create()来创建文件
(2)FileSystem用RPC调用元数据节点,在文件系统的命名空间中创建一个新的文件,元数据节点首先确定文件原来不存在,并且客户端有创建文件的权限,然后创建新文件。
(3)FileSystem返回DFSOutputStream,客户端用于写数据,客户端开始写入数据。
(4)DFSOutputStream将数据分成块,写入data queue。data queue由Data Streamer读取,并通知元数据节点分配数据节点,用来存储数据块(每块默认复制3块)。分配的数据节点放在一个pipeline里。Data Streamer将数据块写入pipeline中的第一个数据节点。第一个数据节点将数据块发送给第二个数据节点。第二个数据节点将数据发送给第三个数据节点。
(5)DFSOutputStream为发出去的数据块保存了ack queue,等待pipeline中的数据节点告知数据已经写入成功。
(6)当客户端结束写入数据,则调用stream的close函数。此操作将所有的数据块写入pipeline中的数据节点,并等待ack queue返回成功。最后通知元数据节点写入完毕。
(7)如果数据节点在写入的过程中失败,关闭pipeline,将ack queue中的数据块放入data queue的开始,当前的数据块在已经写入的数据节点中被元数据节点赋予新的标示,则错误节点重启后能够察觉其数据块是过时的,会被删除。失败的数据节点从pipeline中移除,另外的数据块则写入pipeline中的另外两个数据节点。元数据节点则被通知此数据块是复制块数不足,将来会再创建第三份备份。

 17:HDFS的架构

(1)主从结构
  主节点, namenode
  从节点,有很多个: datanode
(2)namenode负责:
  接收用户操作请求
  维护文件系统的目录结构
  管理文件与block之间关系,block与datanode之间关系
(3)datanode负责:
  存储文件
  文件被分成block存储在磁盘上
  为保证数据安全,文件会有多个副本

18:Hadoop部署方式

(1)本地模式
(2)伪分布模式
(3)集群模式

19:Hadoop的特点

(1)扩容能力(Scalable):能可靠地(reliably)存储和处理千兆字节(PB)数据。
(2)成本低(Economical):可以通过普通机器组成的服务器群来分发以及处理数据。这些服务器群总计可达数千个节点。
(3)高效率(Efficient):通过分发数据,hadoop可以在数据所在的节点上并行地(parallel)处理它们,这使得处理非常的快速。
(4)可靠性(Reliable):hadoop能自动地维护数据的多份副本,并且在任务失败后能自动地重新部署(redeploy)计算任务。

 20:HDFS的概念和特性:

  1)首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件

  2)其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;

  3)重要特性如下:

    (1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

    (2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

    (3)目录结构及文件分块信息(元数据)的管理由namenode节点承担

      namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)

    (4)文件的各个block的存储管理由datanode节点承担

      datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)

    (5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改

  注意:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高;

22:hadoop常用命令参数介绍:

-help             
功能:输出这个命令参数手册
-ls                  
功能:显示目录信息
示例: hadoop fs -ls hdfs://hadoop-server01:9000/
备注:这些参数中,所有的hdfs路径都可以简写
-->hadoop fs -ls /   等同于上一条命令的效果
-mkdir              
功能:在hdfs上创建目录
示例:hadoop fs  -mkdir  -p  /aaa/bbb/cc/dd
-moveFromLocal            
功能:从本地剪切粘贴到hdfs
示例:hadoop  fs  - moveFromLocal  /home/hadoop/a.txt  /aaa/bbb/cc/dd
-moveToLocal              
功能:从hdfs剪切粘贴到本地
示例:hadoop  fs  - moveToLocal   /aaa/bbb/cc/dd  /home/hadoop/a.txt
--appendToFile  
功能:追加一个文件到已经存在的文件末尾
示例:hadoop  fs  -appendToFile  ./hello.txt  hdfs://hadoop-server01:9000/hello.txt
可以简写为:
Hadoop  fs  -appendToFile  ./hello.txt  /hello.txt

-cat  
功能:显示文件内容  
示例:hadoop fs -cat  /hello.txt

-tail                 
功能:显示一个文件的末尾
示例:hadoop  fs  -tail  /weblog/access_log.1
-text                  
功能:以字符形式打印一个文件的内容
示例:hadoop  fs  -text  /weblog/access_log.1
-chgrp
-chmod
-chown
功能:linux文件系统中的用法一样,对文件所属权限
示例:
hadoop  fs  -chmod  666  /hello.txt
hadoop  fs  -chown  someuser:somegrp   /hello.txt
-copyFromLocal    
功能:从本地文件系统中拷贝文件到hdfs路径去
示例:hadoop  fs  -copyFromLocal  ./jdk.tar.gz  /aaa/
-copyToLocal      
功能:从hdfs拷贝到本地
示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz
-cp              
功能:从hdfs的一个路径拷贝hdfs的另一个路径
示例: hadoop  fs  -cp  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-mv                     
功能:在hdfs目录中移动文件
示例: hadoop  fs  -mv  /aaa/jdk.tar.gz  /
-get              
功能:等同于copyToLocal,就是从hdfs下载文件到本地
示例:hadoop fs -get  /aaa/jdk.tar.gz
-getmerge             
功能:合并下载多个文件
示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,...
hadoop fs -getmerge /aaa/log.* ./log.sum
-put                
功能:等同于copyFromLocal
示例:hadoop  fs  -put  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-rm                
功能:删除文件或文件夹
示例:hadoop fs -rm -r /aaa/bbb/

-rmdir                 
功能:删除空目录
示例:hadoop  fs  -rmdir   /aaa/bbb/ccc
-df               
功能:统计文件系统的可用空间信息
示例:hadoop  fs  -df  -h  /

-du
功能:统计文件夹的大小信息
示例:
hadoop  fs  -du  -s  -h /aaa/*

-count         
功能:统计一个指定目录下的文件节点数量
示例:hadoop fs -count /aaa/

-setrep                
功能:设置hdfs中文件的副本数量
示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz
<这里设置的副本数只是记录在namenode的元数据中,是否真的会有这么多副本,还得看datanode的数量>

23:Hdfs的工作机制:

(工作机制的学习主要是为加深对分布式系统的理解,以及增强遇到各种问题时的分析解决能力,形成一定的集群运维能力)


  注意:很多不是真正理解hadoop技术体系的人会常常觉得HDFS可用于网盘类应用,但实际并非如此。要想将技术准确用在恰当的地方,必须对技术有深刻的理解

概述
  1:HDFS集群分为两大角色:NameNode、DataNode
  2:NameNode负责管理整个文件系统的元数据
  3DataNode 负责管理用户的文件数据块
  4文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
  5每一个文件块可以有多个副本,并存放在不同的datanode上
  6Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
  7HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

24:资源调度管理YARN的节点介绍:

1、ResourceManager节点:
  处理客户端请求,启动和监控ApplicationMaster,监控NodeManager,资源分配和调度。
2、NodeManager:
  单个节点上的资源管理,处理来自ResourceManager的命令,处理来自ApplicationMaster的命令。
3、ApplicationMaster:
  数据切分,为应用程序申请资源,分分配给内部任务,任务监控与容错。
4、Container:
  对任务运行环境的抽象,封装了cpu,内存,等多为资源以及环境变量,启动命令等任务运行相关的信息。

 25、离线计算框架,MapReduce:

1、将计算过程分为两个阶段,Map阶段和Reduce阶段:
  map阶段并行处理输入数据。
  reduce阶段对map结果进行汇总。
2、Shuffle连接Map和Reduce两个阶段:
  Map Task将数据写到本地磁盘。
  Reduce Task从每个Map Task上读取一份数据。
3、仅仅适合离线批处理:
  具有很好的容错性和扩展性。
  适合简单的批处理任务。
4、缺点明显:启动开销大,过多使用磁盘导致效率低下等等

 26、数据损坏(corruption)处理:

1、当DataNode读取block的时候,它会计算checksum。
2、如果计算后的checksum,与block创建时值不一样,说明该block已经损坏。
3、Client读取其他DN上的block。
4、NameNode标记该块已经损坏,然后复制block达到预期设计的文件备份数。
5、DataNode在其他文件创建后三周验证其checksum

 

 

待续......

posted @ 2017-09-03 16:58 别先生 阅读( ...) 评论( ...) 编辑 收藏

这篇关于Hadoop的namenode的管理机制,工作机制和datanode的工作原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060635

相关文章

找完工作该补充的东西

首先: 锻炼身体,包括乒乓球,羽毛球,都必须练习,学习,锻炼身体等是一个很重要的与人交际沟通的方式; 打牌,娱乐:会玩是一个人很重要的交际沟通的法宝; 摄影:这个是一个兴趣爱好,也是提高自己的审美,生活品质,当然也是与人沟通的重要途径; 做饭:这个的话就是对自己,对朋友非常有益的一件事情;

工作流Activiti初体验—流程撤回【二】

已经玩工作流了,打算还是研究一下撤回的功能。但是流程图里面并不带撤回的组件,所以需要自己动态改造一下,还是延续上一个流程继续试验撤回功能。《工作流Activiti初体验【一】》 完整流程图 我们研究一下分发任务撤回到发起任务,其他环节的撤回类似 撤回的原理大概如下: 将分发任务后面的方向清空,把发起任务拼接到原来的判断网关,然后结束分发任务,这样流程就到发起任务了 此时的流程如上图,

工作流Activiti初体验【一】

在这里记录一下我的Activiti历程:(以下示例不涉及真实业务,所有逻辑均建立在学习的基础上) bpmn图 发起任务我设置了一个权限组user1,只要是这个权限的用户都可以发起任务 分发任务我设置了一个用户组,用户组中每个用户都可以处理这步流程,只要有一个人处理这步任务,分发的流程就算结束了 分发任务这一环节还有个判断,允许任务下发和不允许任务下发 任务分发完成则来到子流程,每个被分

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

Spring中事务的传播机制

一、前言 首先事务传播机制解决了什么问题 Spring 事务传播机制是包含多个事务的方法在相互调用时,事务是如何在这些方法间传播的。 事务的传播级别有 7 个,支持当前事务的:REQUIRED、SUPPORTS、MANDATORY; 不支持当前事务的:REQUIRES_NEW、NOT_SUPPORTED、NEVER,以及嵌套事务 NESTED,其中 REQUIRED 是默认的事务传播级别。

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库

计算机组成原理——RECORD

第一章 概论 1.固件  将部分操作系统固化——即把软件永恒存于只读存储器中。 2.多级层次结构的计算机系统 3.冯*诺依曼计算机的特点 4.现代计算机的组成:CPU、I/O设备、主存储器(MM) 5.细化的计算机组成框图 6.指令操作的三个阶段:取指、分析、执行 第二章 计算机的发展 1.第一台由电子管组成的电子数字积分和计算机(ENIAC) 第三章 系统总线

GaussDB关键技术原理:高性能(二)

GaussDB关键技术原理:高性能(一)从数据库性能优化系统概述对GaussDB的高性能技术进行了解读,本篇将从查询处理综述方面继续分享GaussDB的高性能技术的精彩内容。 2 查询处理综述 内容概要:本章节介绍查询端到端处理的执行流程,首先让读者对查询在数据库内部如何执行有一个初步的认识,充分理解查询处理各阶段主要瓶颈点以及对应的解决方案,本章以GaussDB为例讲解查询执行的几个主要阶段

【计算机组成原理】部分题目汇总

计算机组成原理 部分题目汇总 一. 简答题 RISC和CICS 简要说明,比较异同 RISC(精简指令集)注重简单快速的指令执行,使用少量通用寄存器,固定长度指令,优化硬件性能,依赖软件(如编译器)来提升效率。 CISC(复杂指令集)包含多样复杂的指令,能一条指令完成多步操作,采用变长指令,减少指令数但可能增加执行时间,倾向于硬件直接支持复杂功能减轻软件负担。 两者均追求高性能,但RISC

MySQL数据库锁的实现原理

MySQL数据库的锁实现原理主要涉及到如何确保在多用户并发访问数据库时,保证数据的完整性和一致性。以下是MySQL数据库锁实现原理的详细解释: 锁的基本概念和目的 锁的概念:在数据库中,锁是用于管理对公共资源的并发控制的机制。当多个用户或事务试图同时访问或修改同一数据时,数据库系统通过加锁来确保数据的一致性和完整性。 锁的目的:解决多用户环境下保证数据库完整性和一致性的问题。在并发的情况下,会